Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- 
            
            
        Joel M. Gichumbi
        , Bernard Omondi 
Abstract
The reaction of the ruthenium arene dimers [(η6-arene)Ru(μ-Cl)Cl]2 (where arene=benzene or p-cymene) with the ligands 4-benzylidene-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L1), 2-methoxybenzylidene-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L2), 4-methylbenzylidene-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L3) and indole-3-carbaldehyde-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L4) in a 1:2 ratio gives the new complexes [(η6-arene)RuCl(L)]+ [arene=C6H6 (with L=L1(1), L2(3), L4(7), with PF6− as a counter ion, and L4 (6), with Cl− as a counter ion) or p-cymene with L=L1(2), L2(4), L3(5), L4(8) with PF6− as a counter ion]. All complexes were fully characterized using 1H and 13C NMR, elemental analyses, UV/Vis and IR spectroscopy. The single crystal X-ray structures of ligand L2 and complex 1 have been determined. The structure of 1 has the Ru atom coordinated with the arene group and to the N,N′-bidentate ligand and to the Cl atom. The arene group occupies the apex, while the ligand and the Cl atom are at the base of a pseudo-octahedral three-legged piano stool. The cytotoxicity of these mononuclear complexes was established in the human epithelial colorectal adenocarcinoma cell line (Caco-2) and for selectivity in the non-cancerous human embryonic kidney cell line (HEK293), using 5-fluorouracil (5-FU) as the reference anticancer drug. Compounds 1 and 7 were relatively inactive toward the Caco-2 tumor cells (IC50>200), while complexes 2–5 showed moderate anti-proliferative properties (IC50>100–200). Compound 6, however, displayed better anti-proliferative properties with an IC50 value lower than that of the reference drug, 5-FU, and was therefore further investigated for its antimicrobial activity against six Gram-positive and four Gram-negative bacteria.
Acknowledgments
We thank the NRF and UKZN for financial support. In addition, we acknowledge Prinsloo Xolisa Phiri for her technical assistance during antimicrobial studies. Joel M. Gichumbi acknowledges Prof. E. N. Njoka for his support.
References
[1] G. Ludwig, G. N. Kaluđerović, M. Bette, M. Block, R. Paschke, D. Steinborn, J. Inorg. Biochem. 2012, 113, 77.10.1016/j.jinorgbio.2012.04.003Search in Google Scholar PubMed
[2] M. A. Jakupec, M. Galanski, V. B. Arion, C. G. Hartinger, B. K. Keppler, Dalton Trans.2008, 14, 183.10.1039/B712656PSearch in Google Scholar PubMed
[3] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, Ca-Cancer J. Clin. 2011, 61, 69.10.3322/caac.20107Search in Google Scholar PubMed
[4] G. Ludwig, G. N. Kaluđerović, M. Bette, M. Block, R. Paschke, D. Steinborn, J. Inorg. Biochem.2012, 113, 77.10.1016/j.jinorgbio.2012.04.003Search in Google Scholar
[5] R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, D. S. Pandey, Inorg. Chem. 2013, 52, 3687.10.1021/ic302196vSearch in Google Scholar PubMed
[6] H. M. Wallace, P. J. Hergenrother, P. J. Sadler, Chem. Soc. Rev.2015, 44, 8771.10.1039/C5CS90123ESearch in Google Scholar
[7] P. Govender, A. K. Renfrew, C. M. Clavel, P. J. Dyson, B. Therrien, G. S. Smith, Dalton Trans. 2011, 40, 1158.10.1039/C0DT00761GSearch in Google Scholar PubMed
[8] P. Heffeter, M. Pongratz, E. Steiner, P. Chiba, M. A. Jakupec, L. Elbling, B. Marian, W. Korner, F. Sevelda, M. Micksche, B. K. Keppler, W. Berger, J. Pharmacol. Exp. Ther.2005, 312, 281.10.1124/jpet.104.073395Search in Google Scholar PubMed
[9] B. M. Blunden, A. Rawal, H. Lu, M. H. Stenzel, Macromolecules2014, 47, 1646.10.1021/ma402078dSearch in Google Scholar
[10] S. Thangavel, R. Rajamanikandan, H. B. Friedrich, M. Ilanchelian, B. Omondi, Polyhedron2016, 107, 124.10.1016/j.poly.2016.01.017Search in Google Scholar
[11] L. K. Filak, S. Göschl, P. Heffeter, K. Ghannadzadeh Samper, A. E. Egger, M. A. Jakupec, B. K. Keppler, W. Berger, V. B. Arion, Organometallics2013, 32, 903.10.1021/om3012272Search in Google Scholar PubMed PubMed Central
[12] P. Appelt, F. D. Fagundes, G. Facchin, M. Gabriela Kramer, D. F. Back, M. A. A. Cunha, B. Sandrino, K. Wohnrath, M. P. de Araujo, Inorg. Chim. Acta2015, 436, 152.10.1016/j.ica.2015.07.022Search in Google Scholar
[13] F. Li, J. G. Collins, F. R. Keene, Chem. Soc. Rev.2015, 44, 2529.10.1039/C4CS00343HSearch in Google Scholar
[14] E. A. Nyawade, H. B. Friedrich, B. Omondi, H. Y. Chenia, M. Singh, S. Gorle, J. Organomet. Chem. 2015, 799–800, 138.10.1016/j.jorganchem.2015.09.007Search in Google Scholar
[15] A. Bolhuis, L. Hand, J. E. Marshall, A. D. Richards, A. Rodger, J. Aldrich-Wright, Eur. J. Pharm. Sci. 2011, 42, 313.10.1016/j.ejps.2010.12.004Search in Google Scholar PubMed
[16] K. T. Potts, Chem. Rev. 1961, 61, 87.10.1021/cr60210a001Search in Google Scholar
[17] N. U. Güzeldemirci, Ö. Küçükbasmacı, Eur. J. Med. Chem.2010, 45, 63.10.1016/j.ejmech.2009.09.024Search in Google Scholar PubMed
[18] H. Bayrak, A. Demirbas, S. A. Karaoglu, N. Demirbas, Eur. J. Med. Chem. 2009, 44, 1057.10.1016/j.ejmech.2008.06.019Search in Google Scholar PubMed
[19] S. Eswaran, A. V. Adhikari, N. S. Shetty, Eur. J. Med. Chem.2009, 44, 4637.10.1016/j.ejmech.2009.06.031Search in Google Scholar PubMed
[20] A. T. Mavrova, D. Wesselinova, Y. A. Tsenov, P. Denkova, Eur. J. Med. Chem. 2009, 44, 63.10.1016/j.ejmech.2008.03.006Search in Google Scholar PubMed
[21] M. H. Klingele, S. Brooker, Coord. Chem. Rev. 2003, 241, 119.10.1016/S0010-8545(03)00049-3Search in Google Scholar
[22] S. Poornima, S. Anbu, R. Ravishankaran, S. Sundaramoorthy, K. Natesan Vennila, A. A. Karande, D. Velmurugan, M. Kandaswamy, Polyhedron2013, 62, 26.10.1016/j.poly.2013.06.017Search in Google Scholar
[23] J. A. Kitchen, N. G. White, M. Boyd, B. Moubaraki, K. S. Murray, P. D. W. Boyd, S. Brooker, Inorg. Chem. 2009, 48, 6670.10.1021/ic900634tSearch in Google Scholar PubMed
[24] S. Sueur, J. P. Wignacourt, G. Nowogrocki, M. Lagrenee, Acta Crystallogr.1991, C47, 1877.Search in Google Scholar
[25] M. H. Klingele, P. D. W. Boyd, B. Moubaraki, K. S. Murray, S. Brooker, Eur. J. Inorg. Chem. 2006, 2006, 573.10.1002/ejic.200500972Search in Google Scholar
[26] W.-J. Wang, C.-H. Lin, J.-S. Wang, S.-W. Tang, Mol. Cryst. Liq. Cryst. 2006, 456, 209.10.1080/15421400600788740Search in Google Scholar
[27] F. Marchetti, C. Pettinari, A. Cerquetella, A. Cingolani, R. Pettinari, M. Monari, R. Wanke, M. L. Kuznetsov, A. J. L. Pombeiro, Inorg. Chem.2009, 48, 6096.10.1021/ic900463bSearch in Google Scholar PubMed
[28] S. Orbisaglia, C. Di Nicola, F. Marchetti, C. Pettinari, R. Pettinari, L. M. D. R. S. Martins, E. C. B. A. Alegria, M. F. C. Guedes da Silva, B. G. M. Rocha, M. L. Kuznetsov, A. J. L. Pombeiro, B. W. Skelton, A. N. Sobolev, A. H. White, Chem. Eur. J. 2014, 20, 3689.10.1002/chem.201304406Search in Google Scholar PubMed
[29] J. M. Gichumbi, H. B. Friedrich, B. Omondi, J. Organomet. Chem. 2016, 808, 87.10.1016/j.jorganchem.2016.02.015Search in Google Scholar
[30] G. Gupta, K. T. Prasad, B. Das, K. M. Rao, Polyhedron2010, 29, 904.10.1016/j.poly.2009.10.016Search in Google Scholar
[31] S. Gloria, G. Gupta, V. Rao Anna, B. Das, K. M. Rao, J. Coord. Chem. 2011, 64, 4168.10.1080/00958972.2011.636427Search in Google Scholar
[32] J. M. Gichumbi, H. B. Friedrich, B. Omondi, J. Mol. Struct. 2016, 1113, 55.10.1016/j.molstruc.2016.02.040Search in Google Scholar
[33] J. M. Gichumbi, H. B. Friedrich, B. Omondi, J. Mol. Catal. A: Chem. 2016. 416, 29.10.1016/j.molcata.2016.02.012Search in Google Scholar
[34] A. F. A. Peacock, M. Melchart, R. J. Deeth, A. Habtemariam, S. Parsons, P. J. Sadler, Chem. Eur. J. 2007, 13, 2601.10.1002/chem.200601152Search in Google Scholar
[35] S. Grguric-Sipka, I. N. Stepanenko, J. M. Lazic, C. Bartel, M. A. Jakupec, V. B. Arion, B. K. Keppler, Dalton Trans. 2009, 3334.10.1039/b822725jSearch in Google Scholar
[36] I. Turel, J. Kljun, F. Perdih, E. Morozova, V. Bakulev, N. Kasyanenko, J. A. W. Byl, N. Osheroff, Inorg. Chem. 2010, 49, 10750.10.1021/ic101355dSearch in Google Scholar
[37] S. Seršen, P. Šket, J. Plavec, I. Turel, J. Inorg. Biochem. 2016, 160, 70.10.1016/j.jinorgbio.2015.11.012Search in Google Scholar
[38] M. A. Bennett, A. K. Smith, J. Chem. Soc., Dalton. Trans. 1974, 233.10.1039/dt9740000233Search in Google Scholar
[39] T. Mosmann, J. Immun. Meth. 1983, 65, 55.10.1016/0022-1759(83)90303-4Search in Google Scholar
[40] CLSI, Performance Standard for Antimicrobial Susceptibility Testing; Seventeenth Information Supplement, CLSI document M100-S17, Clinical and Laboratory Standards Institute, Pennsylvania, 2007, pp. 34–40.Search in Google Scholar
[41] G. M. Sheldrick, Acta Crystallogr.1990, A46, 467.10.1107/S0108767390000277Search in Google Scholar
[42] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[43] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0145).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
- Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
- Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
- Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
- Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
- Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
- Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
- Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
- New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
- Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
- Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
- The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
- Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
- Notes
- Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
- A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Articles in the same Issue
- Frontmatter
- In this Issue
- Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
- Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
- Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
- Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
- Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
- Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
- Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
- Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
- New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
- Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
- Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
- The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
- Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
- Notes
- Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
- A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization