Home The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
Article
Licensed
Unlicensed Requires Authentication

The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe

  • Sebastian Stein , Samir F. Matar , Kai Heinz Schmolke , Jutta Kösters and Rainer Pöttgen EMAIL logo
Published/Copyright: February 24, 2018
Become an author with De Gruyter Brill

Abstract

The germanides Sr3Pd4Ge4 and BaPdGe were obtained from high-temperature reactions in sealed niobium ampoules and their structures have been determined from single-crystal X-ray diffraction data: a=444.2(1), b=438.1(1), c=2472.2(7) pm, space group Immm, U3Ni4Si4 type, wR2=0.0471, 576 unique reflections, 25 parameters for Sr3Pd4Ge4 and a=677.09(8), space group P213, LaIrSi type, wR2=0.0322, 409 unique reflections, nine parameters for BaPdGe. Both germanides have pronounced three-dimensional [Pd4Ge4]δ and [PdGe]δ polyanionic networks with Pd–Ge bonding interactions. This is confirmed by the density functional theory (DFT)-based electronic structure investigations, the trends of charge transfer and crystal orbital overlap population (COOP) analyses.

Acknowledgments

Part of the computations was carried out using the University of Bordeaux-MCIA facilities. Computations on Lebanese German University Linux workstations are gratefully acknowledged.

References

[1] P. S. Salamakha, O. L. Sologub, O. I. Bodak, Ternary Rare-Earth-Germanium Systems, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 27, (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1999, chapter 173, pp. 1–223.10.1016/S0168-1273(99)27004-3Search in Google Scholar

[2] P. S. Salamakha, Crystal Structures and Crystal Chemistry of Ternary Rare-Earth Germanides, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 27, (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1999, chapter 174, pp. 225–338.10.1016/S0168-1273(99)27005-5Search in Google Scholar

[3] Yu. D. Seropegin, A. V. Gribanov, O. I. Bodak, J. Alloys Compd.1998, 269, 157.10.1016/S0925-8388(98)00247-3Search in Google Scholar

[4] Yu. D. Seropegin, O. L. Borisenko, O. I. Bodak, V. N. Nikiforov, M. V. Kovachikova, Yu. V. Kochetkov, J. Alloys Compd.1995, 216, 259.10.1016/0925-8388(94)01266-KSearch in Google Scholar

[5] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Search in Google Scholar

[6] B. Sendlinger, Hochdruck-Untersuchungen an den ambivalenten Verbindungen MTX (M=Yb, Ca, Eu, Sr, Ba; T=Pd, Pt; X=Si, Ge, Sn, Pb), Dissertation, Universität München, München 1993.Search in Google Scholar

[7] R. Pöttgen, J. Mater. Chem. 1995, 5, 505.10.1039/JM9950500505Search in Google Scholar

[8] B. D. Oniskovets, V. K. Bel’skii, V. K. Pecharskii, O. I. Bodak, Sov. Phys. Crystallogr. 1987, 32, 522.Search in Google Scholar

[9] K. Klepp, E. Parthé, Acta Crystallogr.1982, B38, 1541.10.1107/S056774088200630XSearch in Google Scholar

[10] G. Venturini, B. Malaman, B. Roques, J. Solid State Chem. 1989, 79, 136.10.1016/0022-4596(89)90259-4Search in Google Scholar

[11] R. Kessens, W. Jung, Z. Anorg. Allg. Chem. 2002, 628, 2175.10.1002/1521-3749(200209)628:9/10<2175::AID-ZAAC11112175>3.0.CO;2-JSearch in Google Scholar

[12] H. Fujii, A. Sato, Phys. Rev. B2009, 79, 224522.10.1103/PhysRevB.79.224522Search in Google Scholar

[13] J. W. Wang, I. A. Chen, T. L. Hung, Y. B. You, H. C. Ku, Y. Y. Hsu, J. C. Ho, Y. Y. Chen, Phys. Rev. B2012, 85, 024538.10.1103/PhysRevB.85.024538Search in Google Scholar

[14] N. H. Sung, C. J. Roh, B. Y. Kang, B. K. Cho, J. Appl. Phys. 2012, 111, 07E117.10.1063/1.3672089Search in Google Scholar

[15] V. K. Anand, H. Kim, M. A. Tanatar, R. Prozorov, D. C. Johnson, J. Phys.: Condens. Matter2014, 26, 405702.10.1088/0953-8984/26/40/405702Search in Google Scholar

[16] I. A. Chen, C. H. Huang, C. W. Chen, Y. B. You, M. F. Tai, H. C. Ku, Y. Y. Hsu, J. Appl. Phys. 2013, 113, 213902.10.1063/1.4808287Search in Google Scholar

[17] N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, E. Bauer, G. Durand, H. Kaldarar, R. Lackner, H. Michor, E. Royanian, M. Koza, G. Giester, Phys. Rev. B2007, 76, 144118.10.1103/PhysRevB.76.144118Search in Google Scholar

[18] N. Nasir, N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, G. Giester, J. Wosik, G. E. Nauer, J. Solid State Chem. 2010, 183, 565.10.1016/j.jssc.2009.12.023Search in Google Scholar

[19] H. Fujii, A. Sato, J. Alloys Compd.2010, 508, 338.10.1016/j.jallcom.2010.08.150Search in Google Scholar

[20] V. V. Romaka, M. Falmbigl, A. Grytsiv, P. Rogl, J. Alloys Compd.2015, 618, 656.10.1016/j.jallcom.2014.08.159Search in Google Scholar

[21] G. Cordier, P. Woll, J. Less-Common Met. 1991, 169, 291.10.1016/0022-5088(91)90076-GSearch in Google Scholar

[22] N. Nasir, A. Grytsiv, N. Melnychenko-Koblyuk, P. Rogl, I. Bednar, E. Bauer, J. Solid State Chem. 2010, 183, 2329.10.1016/j.jssc.2010.07.047Search in Google Scholar

[23] I. Doverbratt, S. Ponou, Y. Zhang, S. Lidin, G. Miller, Chem. Mater. 2015, 27, 304.10.1021/cm503985hSearch in Google Scholar

[24] I. Doverbratt, S. Ponou, S. Lidin, J. Solid State Chem. 2013, 197, 312.10.1016/j.jssc.2012.09.003Search in Google Scholar

[25] I. Doverbratt, S. Ponou, F. Wang, S. Lidin, Inorg. Chem. 2015, 54, 9098.10.1021/acs.inorgchem.5b01528Search in Google Scholar PubMed

[26] B. Saparov, D. S. Parker, A. S. Sefat, Dalton Trans. 2012, 41, 12920.10.1039/c2dt31744cSearch in Google Scholar PubMed

[27] D. Voßwinkel, R.-D. Hoffmann, M. Greiwe, M. Eul, R. Pöttgen, Z. Kristallogr. 2016, 231, 641.10.1515/zkri-2016-1992Search in Google Scholar

[28] D. Voßwinkel, R.-D. Hoffmann, V. Svitlyk, W. Hermes, M. Greiwe, O. Niehaus, B. Chevalier, S. F. Matar, A. F. Al Alam, M. Nakhl, N. Ouaini, R. Pöttgen, Z. Kristallogr. 2018, 233, 81.10.1515/zkri-2017-2092Search in Google Scholar

[29] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Search in Google Scholar

[30] R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Search in Google Scholar

[31] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

[32] Ya. P. Yarmolyuk, L. G. Aksel’rud, Yu. N. Grin, V. S. Fundamenskii, E. I. Gladyshevskii, Sov. Phys. Crystallogr. 1979, 24, 332.Search in Google Scholar

[33] L. Palatinus, Acta Crystallogr.2013, B69, 1.10.1107/S0108767313099868Search in Google Scholar

[34] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.10.1107/S0021889807029238Search in Google Scholar

[35] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[36] H. D. Flack, G. Bernadinelli, Acta Crystallogr.1999, A55, 908.10.1107/S0108767399004262Search in Google Scholar PubMed

[37] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.10.1107/S0021889800007184Search in Google Scholar

[38] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr.2013, B69, 249.10.1107/S2052519213010014Search in Google Scholar

[39] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.10.1103/PhysRev.136.B864Search in Google Scholar

[40] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.10.1103/PhysRev.140.A1133Search in Google Scholar

[41] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[42] R. Bader, Chem. Rev. 1991, 91, 893.10.1021/cr00005a013Search in Google Scholar

[43] A. R. Williams, J. Kübler, C. D. Gelatt Jr., Phys. Rev. B1979, 19, 6094.10.1103/PhysRevB.19.6094Search in Google Scholar

[44] V. Eyert, The Augmented Spherical Wave Method – A Comprehensive Treatment, in Lecture Notes in Physics, Springer, Berlin, Heidelberg 2007, chapter 719.Search in Google Scholar

[45] R. Hoffmann, Angew. Chem., Int. Ed. Engl.1987, 26, 846.10.1002/anie.198708461Search in Google Scholar

[46] E. Hovestreydt, K. Klepp, E. Parthé, Acta Crystallogr.1982, B38, 1803.10.1107/S0567740882007249Search in Google Scholar

[47] J. Emsley, The Elements, Oxford University Press, Oxford 1999.Search in Google Scholar

[48] R. Pöttgen, Z. Naturforsch. 1995, 50b, 1181.10.1515/znb-1995-0810Search in Google Scholar

[49] X. Rocquefelte, R. Gautier, J.-F. Halet, R. Müllmann, C. Rosenhahn, B. D. Mosel, G. Kotzyba, R. Pöttgen, J. Solid State Chem. 2007, 180, 533.10.1016/j.jssc.2006.11.013Search in Google Scholar

[50] J. Donohue, The Structures of the Elements, Wiley, New York 1974.Search in Google Scholar

[51] R. Hoffmann, C. Zheng, J. Phys. Chem. 1985, 89, 4175.10.1021/j100266a007Search in Google Scholar

[52] D. Johrendt, C. Felser, O. Jepsen, O. K. Andersen, A. Mewis, J. Rouxel, J. Solid State Chem. 1997, 130, 254.10.1006/jssc.1997.7300Search in Google Scholar

[53] S. F. Matar, R. Pöttgen, M. Nakhl, Z. Naturforsch. 2017, 72b, 207.10.1515/znb-2016-0230Search in Google Scholar

Received: 2018-1-5
Accepted: 2018-1-12
Published Online: 2018-2-24
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
  4. Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
  5. Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
  6. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
  7. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
  8. Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
  9. Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
  10. Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
  11. Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
  12. New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
  13. Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
  14. Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
  15. The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
  16. Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
  17. Notes
  18. Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
  19. A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0005/html
Scroll to top button