Home Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
Article
Licensed
Unlicensed Requires Authentication

Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst

  • Zahra Abshirini and Abdolkarim Zare EMAIL logo
Published/Copyright: March 14, 2018
Become an author with De Gruyter Brill

Abstract

In this research, initial production and characterization of a novel Brønsted-acidic ionic liquid, namely, N,N,N′,N′-tetramethylethylenediaminium-N,N′-disulfonic acid hydrogen sulfate ([TMEDSA][HSO4]2), has been described (characterization was achieved using Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass and thermal gravimetric spectra). Thereafter, utilization of [TMEDSA][HSO4]2 as a highly effectual catalyst for the synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives through the one-pot pseudo five-component reaction of phenylhydrazine (2 eq.) with ethyl acetoacetate (2 eq.) and arylaldehydes (1 eq.) in relatively mild conditions, has been reported.

Acknowledgment

The authors acknowledge the support of this work by the Research Council of Payame Noor University.

References

[1] M. A. Waseem, Shireen, K. Ansari, F. Ibad, A. Ibad, J. Singh, I. R. Siddiqui, Tetrahedron Lett.2017, 58, 4169.10.1016/j.tetlet.2017.09.039Search in Google Scholar

[2] H. R. Safaei, M. Shekouhy, V. Shafiee, M. Davoodi, J. Mol. Liq.2013, 180, 139.10.1016/j.molliq.2013.01.013Search in Google Scholar

[3] J. Lunagariya, A. Dhar, R. L. Vekariya, RSC Adv.2017, 7, 5412.10.1039/C6RA26722JSearch in Google Scholar

[4] F. Abbasi, N. Azizi, M. Abdoli-Senejani, J. Iran. Chem. Soc.2017, 14, 2097.10.1007/s13738-017-1146-5Search in Google Scholar

[5] A. A. Marzouk, A. A. Abdelhamid, S. K. Mohamed, J. Simpson, Z. Naturforsch.2017, 72b, 23.10.1515/znb-2016-0121Search in Google Scholar

[6] M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, M. Kruger, J. Org. Chem.2012, 77, 3640.10.1021/jo300137wSearch in Google Scholar PubMed

[7] A. Zare, Z. Nasouri, J. Mol. Liq.2016, 216, 364.10.1016/j.molliq.2016.01.056Search in Google Scholar

[8] A. Zare, T. Yousofi, A. R. Moosavi-Zare, RSC Adv.2012, 2, 7988.10.1039/c2ra20679jSearch in Google Scholar

[9] A. Zare, E. Sharif, A. Arghoon, M. Ghasemi, B. Dehghani, S. Ahmad-Zadeh, F. Zarei, Iran. J. Catal.2017, 7, 233.Search in Google Scholar

[10] A. Gupta, R. Kaur, D. Singh, K. K. Kapoor, Tetrahedron Lett.2017, 58, 26, 2583.10.1016/j.tetlet.2017.05.067Search in Google Scholar

[11] A. R. Moosavi-Zare, M. A. Zolfigol, S. Farahmand, A. Zare, A. R. Pourali, R. Ayazi-Nasrabadi, Synlett2014, 25, 193.10.1055/s-0033-1340088Search in Google Scholar

[12] A. Rabiei, S. Abdolmohammadi, F. Shafaei, Z. Naturforsch.2017, 72b, 241.10.1515/znb-2016-0219Search in Google Scholar

[13] M. Gökçe, S. Utku, E. Küpeli, Eur. J. Med. Chem.2009, 44, 3760.10.1016/j.ejmech.2009.04.048Search in Google Scholar

[14] Y. Liu, G. He, C. Kai, Y. Li, H. Zhu, J. Heterocycl. Chem.2012, 49, 1370.10.1002/jhet.1045Search in Google Scholar

[15] P. Manojkumar, T. K. Ravi, S. Gopalakrishnan, Eur. J. Med. Chem.2009, 44, 4690.10.1016/j.ejmech.2009.07.004Search in Google Scholar

[16] N. Das, A. Verma, P. K. Shrivastava, S. K. Shrivastava, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.2008, 47B, 1555.Search in Google Scholar

[17] K. R. Kim, K. Ju-Lee, K. Ji-Sun, N. Zaesung, R. K. Hyoung, G. C. Hyae, Eur. J. Pharmacol.2005, 528, 37.10.1016/j.ejphar.2005.10.027Search in Google Scholar

[18] K. Sujatha, G. Shanthi, N. P. Selvam, S. Manoharan, P. T. Perumal, M. Rajendran, Bioorg. Med. Chem. Lett.2009, 19, 4501.10.1016/j.bmcl.2009.02.113Search in Google Scholar

[19] M. F. Brana, A. Gradillas, A. G. Ovalles, B. López, N. Acero, F. Llinares, D. M. Mingarro, Bioorg. Med. Chem.2006, 14, 9.10.1016/j.bmc.2005.09.059Search in Google Scholar

[20] D. Castagnolo, A. D. Logu, M. Radi, B. Bechi, F. Manetti, M. Magnani, S. Supino, R. Meleddu, L. Chisu, M. Botta, Bioorg. Med. Chem.2008, 16, 8587.10.1016/j.bmc.2008.08.016Search in Google Scholar

[21] C. Pettinari, F. Marchetti, R. Pettinari, A. Drozdov, S. Troyanov, A. I. Voloshin, J. Chem. Soc., Dalton Trans.2002, 1409.10.1039/b108058jSearch in Google Scholar

[22] M. Londershausen, Pestic. Sci.1996, 48, 269.10.1002/(SICI)1096-9063(199612)48:4<269::AID-PS478>3.0.CO;2-BSearch in Google Scholar

[23] A. Khazaei, F. Abbasi, A. R. Moosavi-Zare, New J. Chem.2014, 38, 5287.10.1039/C4NJ01079ESearch in Google Scholar

[24] A. R. Moosavi-Zare, M. A. Zolfigol, E. Noroozizadeh, O. Khaledian, B. Shirmardi Shaghasemi, Res. Chem. Intermed.2016, 42, 4759.10.1007/s11164-015-2317-6Search in Google Scholar

[25] D. Banerjee, R. Karmakar, U. Kayal, G. Maiti, Synth. Commun.2017, 47, 1006.10.1080/00397911.2017.1298134Search in Google Scholar

[26] S. Tayebi, K. Niknam, Iran. J. Catal.2012, 2, 69.Search in Google Scholar

[27] C. Yang, P.-Z. Liu, D.-Z. Xu, ChemistrySelect2017, 2, 1232.10.1002/slct.201601801Search in Google Scholar

[28] A. Hassankhani, J. Mex. Chem. Soc.2015, 59, 1.Search in Google Scholar

[29] A. Hasaninejed, M. Rasekhi Kazerooni, A. Zare, ACS Sustain. Chem. Eng.2013, 1, 679.10.1021/sc400081cSearch in Google Scholar

[30] F. Shirini, M. Seddighi, M. Mazloumi, M. Makhsous, M. Abedini, J. Mol. Liq.2015, 208, 291.10.1016/j.molliq.2015.04.027Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0179).


Received: 2017-10-14
Accepted: 2017-12-1
Published Online: 2018-3-14
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
  4. Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
  5. Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
  6. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
  7. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
  8. Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
  9. Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
  10. Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
  11. Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
  12. New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
  13. Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
  14. Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
  15. The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
  16. Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
  17. Notes
  18. Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
  19. A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2017-0179/html
Scroll to top button