Startseite Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation

  • Hossein Shahbazi-Alavi EMAIL logo , Seyed Hadi Nazemzadeh , Abolfazl Ziarati und Javad Safaei-Ghomi
Veröffentlicht/Copyright: 14. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An easy and rapid method for the synthesis of propargylamines has been achieved through a three-component reaction of phenylacetylene, aromatic aldehydes, and morpholine or piperidine using nano-NiZr4(PO4)6 under ultrasound irradiation. Atom economy, a wide range of products, excellent yields in short times, reusability of the catalyst, and low catalyst loading are some of the important features of this protocol.

References

[1] J. J. Chen, D. M. Swope, J. Clin. Pharmacol. 2005, 45, 878–894.10.1177/0091270005277935Suche in Google Scholar PubMed

[2] I. Bolea, A. Gella, M. Unzeta, J. Neural. Transm. 2013, 120, 893–902.10.1007/s00702-012-0948-ySuche in Google Scholar PubMed

[3] W. Maruyama, T. Yamamoto, K. Kitani, M. C. Carrillo, M. Youdim, M. Naoi, Mech. Ageing Dev. 2000, 116, 181–191.10.1016/S0047-6374(00)00144-5Suche in Google Scholar

[4] C. H. Williams, J. Lawson, Biochem. Pharmacol. 1975, 24, 1889–1891.10.1016/0006-2952(75)90410-4Suche in Google Scholar PubMed

[5] M. Shi, Y. M. Shen, J. Org. Chem. 2002, 67, 16–21.10.1021/jo0014966Suche in Google Scholar PubMed

[6] J. Weng, Y. Chen, B. Yue, M. Xu, H. Jin, Eur. J. Org. Chem. 2015, 3164, 3164–3170.10.1002/ejoc.201500166Suche in Google Scholar

[7] S. Morikawa, S. Yamazaki, Y. Furusaki, N. Amano, K. Zenke, K. Kakiuchi, J. Org. Chem. 2006, 71, 3540–3544.10.1021/jo0602118Suche in Google Scholar PubMed

[8] Y. Luo, Z. Li, C. J. Li, Org. Lett. 2005, 7, 2675–2678.10.1021/ol050826bSuche in Google Scholar PubMed

[9] D. Chernyak, N. Chernyak, V. Gevorgyan, Adv. Synth. Catal. 2010, 352, 961–966.10.1002/adsc.201000015Suche in Google Scholar PubMed PubMed Central

[10] M. Periasamy, P. O. Reddy, N. Sanjeevakumar, Eur. J. Org. Chem. 2013, 2013, 3866–3875.10.1002/ejoc.201300231Suche in Google Scholar

[11] V. K. Y. Lo, C. Y. Zhou, M. K. Wong, C. M. Che, Chem. Commun. 2010, 46, 213–215.10.1039/B914516HSuche in Google Scholar PubMed

[12] V. K. Y. Lo, M. K. Wong, C. M. Che, Org. Lett. 2008, 10, 517–519.10.1021/ol702970rSuche in Google Scholar PubMed

[13] M. Periasamy, N. Sanjeevakumar, M. Dalai, R. Gurubrahamam, P. O. Reddy, Org. Lett. 2012, 14, 2932–2935.10.1021/ol300717eSuche in Google Scholar PubMed

[14] N. Gommermann, C. Koradin, K. Polborn, P. Knochel, Angew. Chem. Int. Ed. 2003, 42, 5763–5766.10.1002/anie.200352578Suche in Google Scholar PubMed

[15] L. L. Chng, J. Yang, Y. Wei, J. Y. Ying, Adv. Synth. Catal. 2009, 351, 2887–2896.10.1002/adsc.200900518Suche in Google Scholar

[16] M. J. Aliaga, D. J. Ramón, M. Yus, Org. Biomol. Chem. 2010, 8, 43–46.10.1039/B917923BSuche in Google Scholar

[17] E. Ramu, R. Varala, N. Sreelatha, S. R. Adapa, Tetrahedron Lett. 2007, 48, 7184–7190.10.1016/j.tetlet.2007.07.196Suche in Google Scholar

[18] S. B. Park, H. Alper, Chem. Commun. 2005, 10, 1315–1317.10.1039/B416268DSuche in Google Scholar PubMed

[19] F. Colombo, M. Benaglia, S. Orlandi, F. Usuelli, G. Celentano, J. Org. Chem. 2006, 71, 2064–2070.10.1021/jo052481gSuche in Google Scholar PubMed

[20] M. K. Patil, M. Keller, B. M. Reddy, P. Pale, J. Sommer, Eur. J. Org. Chem. 2008, 2008, 4440–4445.10.1002/ejoc.200800359Suche in Google Scholar

[21] R. Maggi, A. Bello, C. Oro, G. Sartori, L. Soldi, Tetrahedron, 2008, 64, 1435–1439.10.1016/j.tet.2007.11.043Suche in Google Scholar

[22] M. Srinivas, P. Srinivasu, S. K. Bhargava, M. L. Kantam, Catal. Today2013, 208, 66–71.10.1016/j.cattod.2013.02.006Suche in Google Scholar

[23] S. Zahedi, J. Safaei-Ghomi, H. Shahbazi-Alavi, Ultrason. Sonochem. 2018, 40, 260–264.10.1016/j.ultsonch.2017.07.023Suche in Google Scholar PubMed

[24] J. Safaei-Ghomi, S. Paymard-Samani, S. Zahedi, H. Shahbazi-Alavi, Z. Naturforsch. 2015, 70b, 819–828.10.1515/znb-2015-0070Suche in Google Scholar

[25] J. Safaei-Ghomi, H. Shahbazi-Alavi, P. Babaei, Z. Naturforsch. 2016, 71b, 849–856.10.1515/znb-2016-0041Suche in Google Scholar

[26] P. Cintas, Ultrason. Sonochem. 2016, 28, 257–258.10.1016/j.ultsonch.2015.07.024Suche in Google Scholar PubMed

[27] K. S. Ojha, T. J. Mason, C. P. O’Donnell, J. P. Kerry, B. K. Tiwari, Ultrason. Sonochem. 2017, 34, 410–417.10.1016/j.ultsonch.2016.06.001Suche in Google Scholar PubMed

[28] N. G. Shabalala, R. Pagadala, S. B. Jonnalagadda, Ultrason. Sonochem. 2015, 27, 423–429.10.1016/j.ultsonch.2015.06.005Suche in Google Scholar PubMed

[29] J. Safaei-Ghomi, F. Eshteghal, H. Shahbazi-Alavi, Ultrason. Sonochem. 2016, 33, 99–9105.10.1016/j.ultsonch.2016.04.025Suche in Google Scholar PubMed

[30] I. G. Trubach, A. I. Beskrovnyi, A. I. Orlova, V. A. Orlova, V. S. Kurazhkovskaya, Crystallogr. Rep.2004, 49, 895–898.10.1134/1.1828132Suche in Google Scholar

[31] A. R. Zaripov, V. A. Orlova, V. I. Pet’kov, O. M. Slyunchev, D. D. Galuzin, S. I. Rovnyi, Russ. J. Inorg. Chem. 2009, 54, 45–51.10.1134/S0036023609010112Suche in Google Scholar

[32] V. A. Peshkov, O. P. Pereshivko, E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790–3807.10.1039/c2cs15356dSuche in Google Scholar PubMed

[33] U. C. Rajesh, U. Gulati, D. S. Rawat, ACS Sustain. Chem. Eng. 2016, 4, 3409–3419.10.1021/acssuschemeng.6b00470Suche in Google Scholar

[34] K. Namitharan, K. Pitchumani, Eur. J. Org. Chem. 2010, 2010, 411–415.10.1002/ejoc.200901084Suche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0178).


Received: 2017-10-11
Accepted: 2018-2-22
Published Online: 2018-3-14
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
  4. Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
  5. Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
  6. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
  7. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
  8. Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
  9. Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
  10. Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
  11. Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
  12. New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
  13. Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
  14. Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
  15. The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
  16. Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
  17. Notes
  18. Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
  19. A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2017-0178/html
Button zum nach oben scrollen