Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
Abstract
A bisupporting Keggin-type polyoxometalate compound, {[CuII(phen)2]2[(HBW12O40)]}[CuIICl2(phen)]2· 2H2O (phen=1,10-phenathroline) (1), has been synthesized through the hydrothermal method and characterized by IR spectroscopy, elemental analysis, UV/Vis/NIR spectroscopy, and powder and single crystal X-ray diffraction. The bisupporting Keggin-polyoxometalate consists of one Keggin-type [HBW12O40]4− core and two covalently linked copper(II) complex fragments [Cu(phen)2]2+. In the crystal structure π···π interactions, C–H···Cl, O–H···Cl, O–H···O and C–H···O hydrogen bonds lead to a three-dimensional supramolecular structure.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (21471045, 21571049), the Natural Science Foundation of Henan Province of China (162300410027, 162300410013), and the Foundation of the Education Department of Henan Province of China (13A150045).
References
[1] D. Li, Z. N. Liu, J. Song, H. Li, B. F. Zhang, P. C. Yin, Z. X. N. Zheng, J. E. Robterts, M. Tsige, C. Hill, T. B. Liu, Angew. Chem. Int. Ed. 2017, 12, 3342.10.1002/ange.201612008Search in Google Scholar
[2] G. Markiewicz, D. Pakulski, A. Galanti, V. Patroniak, A. Ciesielski, A. R. Stefankiewicz, P. Samori, Chem. Commun. 2017, 53, 7278.10.1039/C7CC01805CSearch in Google Scholar PubMed
[3] M. Piot, S. Hupin, H. Lavanant, C. Afonso, L. Bouteiller, A. Proust, G. Izzet, Inorg. Chem. 2017, 56, 8490.10.1021/acs.inorgchem.7b01187Search in Google Scholar PubMed
[4] P. P. Zhu, N. Sheng, M. T. Li, J. S. Li, G. D. Liu, X. Y. Yang, J. Jiang, J. Mater. Chem. A2017, 5, 17920.10.1039/C7TA05254ESearch in Google Scholar
[5] Y. W. Li, L. Y. Guo, H. F. Su, M. Jagodič, M. Luo, X. Q. Zhou, L. S. Zheng, Inorg. Chem. 2017, 56, 2481.10.1021/acs.inorgchem.6b02601Search in Google Scholar PubMed
[6] Y. Q. Jiao, M. T. Li, C. Qin, Z. M. Su, Cryst. Eng. Commun. 2017, 19, 1721.10.1039/C6CE02420CSearch in Google Scholar
[7] N. Shi, J. Tan, X. Wan, Y. Guan, J. Zhang, Chem. Commun. 2017, 53, 4390.10.1039/C7CC01586KSearch in Google Scholar
[8] X. X. Chen, Z. Wang,, R. R. Zhang, L. Q. Xu, D. Sun, Chem. Commun. 2017, 53, 10560.10.1039/C7CC05741ESearch in Google Scholar
[9] Y. P. Duan, W. Wei, F. Xiao,Y. R. Xi, S. L. Chen, J. L. Wang, Y. Q. Xu, C. W. Hu, Catal. Sci. Technol.2016, 6, 8540.10.1039/C6CY02062CSearch in Google Scholar
[10] Q. Wu, X. Miao, H. Wang, Y. M. Wu, J. Li, J. Lu, H. P. Ju, Z. Naturforsch.2016, 71b, 783.10.1515/znb-2015-0202Search in Google Scholar
[11] Y. Cao, K. Yu, C. M. Wang, C. X. Wang, Z. H. Su, B. B. Zhou, Z. Naturforsch.2015, 70b, 311.10.1515/znb-2014-0239Search in Google Scholar
[12] A. X. Tian, Y. L. Ning, H. P. Ni, X. Hou, R. Xiao, J. Ying, Z. Naturforsch.2016, 71b, 1125.10.1515/znb-2016-0115Search in Google Scholar
[13] Y. Q. Jiao, M. T. Li, C. Qin, Z. M. Su, Cryst. Eng. Commun. 2017, 19, 1721.10.1039/C6CE02420CSearch in Google Scholar
[14] M. Raizada, F. Sama, M. Ashafaq, M. Shahid, M. Ahmad, Z. A. Siddiqi, J. Mater. Chem. C2017, 5, 9315.10.1039/C7TC03172FSearch in Google Scholar
[15] J. Z. Tian, T. Jing, Y. J. Zheng, Z. Naturforsch.2015, 70b, 461.10.1515/znb-2014-0275Search in Google Scholar
[16] F. X. Meng, J. Sun, K. Liu, F. X. Ma, Y. G. Chen, J. Coord. Chem.2007, 60, 401.10.1080/00958970600794750Search in Google Scholar
[17] J. P. Wang, G. L. Guo, J. Y. Niu, J. Mol. Struct. 2007, 885, 161.10.1016/j.molstruc.2007.10.025Search in Google Scholar
[18] Y. Y. Hu, T. T. Zhang, X. Zhang, D. C. Zhao, X. B. Cui, Q. S. Huo, J. Q. Xu, Dalton Trans. 2016, 45, 2562.10.1039/C5DT04413HSearch in Google Scholar
[19] D. C. Zhao, Y. Y. Hu, H. Ding, H. Y. Guo, X. B. Cui, X. Zhang, J. Q. Xu, Dalton Trans. 2015, 44, 8971.10.1039/C5DT00201JSearch in Google Scholar PubMed
[20] B. S. Zhang, C. S. Wu, J. P. Qiu, Y. X. Li, Z. X. Liu, J. Coord. Chem.2014, 67, 787.10.1080/00958972.2014.904855Search in Google Scholar
[21] S. Reinoso, P. Vitoria, L. S. Felices, L. Lezama, J. M. Gutiérrez-Zorrilla, Inorg. Chem. 2006, 45, 108.10.1021/ic051322cSearch in Google Scholar PubMed
[22] S. Chang, C. Qin, E. B. Wang, Y. G. Li, X. L. Wang, Inorg. Chem. Commun.2006, 9, 727.10.1016/j.inoche.2006.04.015Search in Google Scholar
[23] J. Q. Sha, J. W. Sun, M. T. Li, C. Wang, G. M. Li, P. F. Yan, L. J. Sun, Dalton Trans. 2013, 42, 1667.10.1039/C2DT31951ASearch in Google Scholar
[24] K. Alimaje, X. Wang, Z. Y. Zhang, J. Peng, Z. Y. Shi, X. Yu, Z. X. Ren, J. Clust. Sci. 2013, 24, 1021.10.1007/s10876-013-0594-zSearch in Google Scholar
[25] C. Y. Kong, X. Y. Duan, J. J. Lai, M. L. Wei, J. Clust. Sci. 2017, 28, 1407.10.1007/s10876-016-1144-2Search in Google Scholar
[26] L. N. Xiao, L. M. Wang, X. N. Shan, H. Y. Guo, L. W. Fu, Y. Y. Hu, J. Q. Xu, Cryst. Eng. Commun. 2015, 17, 1336.10.1039/C4CE02043JSearch in Google Scholar
[27] L. H. Wei, Z. L. Wang, M. X. Li, Z. Naturforsch.2013, 68b, 1219.10.5560/znb.2013-3116Search in Google Scholar
[28] G. Hu, H. Miao, H. Mei, S. Zhou, Y. Xu, Dalton Trans. 2016, 45, 7947.10.1039/C6DT00138FSearch in Google Scholar PubMed
[29] Y. Y. Hu, D. C. Zhao, H. Y. Guo, L. W. Fu, L. L. Guo, X. B. Cui, J. Q. Xu, Dalton Trans. 2015, 44, 14830.10.1039/C5DT02060CSearch in Google Scholar
[30] X. Wang, M. M. Zhang, X. L. Hao, Y. H. Wang, Y. Wei, F. S. Liang, Y. G. Li, Cryst. Growth Des. 2013, 13, 3454.10.1021/cg400353jSearch in Google Scholar
[31] H. Yang, S. Guo, J. Tao, J. Lin, R. Cao, Cryst. Growth Des. 2009, 9, 4735.10.1021/cg9005983Search in Google Scholar
[32] B. An, R. M. Zhou, L. Sun, Y. Bai, D. B. Dang, Spectrochim. Acta, Part A2014, 128, 319.10.1016/j.saa.2014.02.154Search in Google Scholar PubMed
[33] Q. X. Han, C. He, M. Zhao, B. Qi, J. Y. Niu, C. Y. Duan, J. Am. Chem. Soc. 2013, 135, 10186.10.1021/ja401758cSearch in Google Scholar PubMed
[34] D. B. Dang, G. S. Zheng, Y. Bai, F. Yang, H. Gao, P. T. Ma, J. Y. Niu, Inorg. Chem. 2011, 50, 7907.10.1021/ic200159wSearch in Google Scholar PubMed
[35] Y. Wang, L. M. Wang, Y. Y. Hu, L. N. Xiao, D. C. Zhao, H. Y. Guo, J. Q. Xu, Polyhedron2014, 83, 2.10.1016/j.poly.2014.03.030Search in Google Scholar
[36] J. W. Zhao, Y. Song, P. T. Ma, J. P. Wang, J. Y. Niu, J. Solid. State Chem. 2009, 182, 1798.10.1016/j.jssc.2009.04.028Search in Google Scholar
[37] L. N. Xiao, Y. Wang, C. L. Pan, J. N. Xu, T. G. Wang, H. Ding, J. Q. Xu, Cryst. Eng. Commun. 2011, 13, 4878.10.1039/c0ce00897dSearch in Google Scholar
[38] X. X. Lu, Y. H. Luo, Y. Xu, H. Zhang, Cryst. Eng. Commun. 2015, 17, 1631.10.1039/C4CE02211DSearch in Google Scholar
[39] H. J. Pang, M. Yang, L. Kang, H. Y Ma, B. Liu, S. B. Li, H. Liu, J. Solid State Chem. 2013, 198, 440.10.1016/j.jssc.2012.11.007Search in Google Scholar
[40] L. N. Xiao, Y. Y. Hu, L. M. Wang, Y. Wang, J. N. Xu, H. Ding, X. B. Cui, J. Q. Xu, Cryst. Eng. Commun.2012, 14, 8589.10.1039/c2ce26254aSearch in Google Scholar
[41] Z. M. Zhang, J. Liu, Y. G. Li, S. Yao, E. B. Wang, X. L. Wang, J. Solid State Chem. 2010, 183, 228.10.1016/j.jssc.2009.10.016Search in Google Scholar
[42] D. B. Dang, Y. H. Fan, Y. Bai, Y. N. Jin, Synth. React. Inorg. Met.-Org. Chem.2010, 40, 748.10.1080/15533174.2010.522538Search in Google Scholar
[43] V. Shivaiah, S. K. Das, Inorg. Chem. 2005, 44, 8846.10.1021/ic050830jSearch in Google Scholar PubMed
[44] L. M. Wang, H. Y. Guo, S. Li, Y. Y. Hu, Y. Wang, L. N. Xiao, Y. Fan, J. Coord. Chem.2014, 67, 728.10.1080/00958972.2014.890719Search in Google Scholar
[45] D. B. Dang, Y. N. Zheng, Y. Bai, X. Y. Guo, P. T. Ma, J. Y. Niu, Cryst. Growth. Des. 2012, 12, 3856.10.1021/cg300075aSearch in Google Scholar
[46] D. B. Dang, B. An, W. J. Niu, Y. Bai, Spectrochim. Acta, Part A2012, 91, 338.10.1016/j.saa.2012.02.015Search in Google Scholar PubMed
[47] L. Li, M. Cheng, Y. Bai, B. An, D. B. Dang, Spectrochim. Acta, Part A2015, 150, 846.10.1016/j.saa.2015.06.064Search in Google Scholar PubMed
[48] A. Tézé, M. Michelon, G. Hervé, Inorg. Chem. 1997, 36, 505.10.1021/ic961051tSearch in Google Scholar
[49] G. M. Sheldrick, Sadabs, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen (Germany) 2002.Search in Google Scholar
[50] R. H. Blessing, Acta Crystallogr.1995, A51, 33.10.1107/S0108767394005726Search in Google Scholar PubMed
[51] G. M. Sheldrick, Shelxl-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.Search in Google Scholar
[52] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[53] L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 9, 955.10.1039/B617136BSearch in Google Scholar PubMed
[54] J. Y. Niu, J. W. Zhao, J. P. Wang, P. T. Ma, J. Solid State Chem. 2004, 699, 85.Search in Google Scholar
[55] J. C. Yin, T. Z. Qin, C. Hu, G. M. He, B. W. Zhao, C. Zhang, J. Wang, Mater. Lett. 2017, 197, 221.10.1016/j.matlet.2017.02.022Search in Google Scholar
[56] C. G. Liu, T. Zheng, S. Liu, H. Y. Zhang, J. Mol. Struct. 2016, 1110, 44.10.1016/j.molstruc.2016.01.015Search in Google Scholar
[57] Z. Fu, Y. Zeng, X. Liu, D. Song, S. Liao, J. Dai, Chem. Commun. 2012, 48, 6154.10.1039/c2cc32019cSearch in Google Scholar PubMed
[58] M. A. Tasdelen, M. Ciftci, Y. Yagci, Macromol. Chem. Phys. 2012, 213, 1391.10.1002/macp.201200204Search in Google Scholar
[59] F. P. Hou, J. Cheng, P. X. Xi, F. J. Chen, L. Huang, G. Q. Xie, Z. Z. Zeng, Dalton Trans. 2012, 41, 5799.10.1039/c2dt12462aSearch in Google Scholar PubMed
[60] C. Tan, W. Bu, J. Solid State Chem.2014, 219, 93.10.1016/j.jssc.2014.07.015Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
- Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
- Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
- Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
- Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
- Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
- Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
- Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
- New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
- Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
- Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
- The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
- Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
- Notes
- Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
- A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Articles in the same Issue
- Frontmatter
- In this Issue
- Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
- Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
- Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
- Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
- Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
- Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
- Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
- Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
- New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
- Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
- Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
- The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
- Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
- Notes
- Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
- A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization