Startseite Technik Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications

  • Subramanian Sundaramoorthy ORCID logo EMAIL logo , Karthic Kumar Balan , Saravanan Ramaiyan Alwar , I. Caraline , S. Gowri und S. Kavitha
Veröffentlicht/Copyright: 31. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Wild silk varieties are less explored in the field of biomaterials than cultivated mulberry silk (Bombyx Mori). In the present work, an electrospun scaffold was produced from wild silk, muga (Antheraea assamensis), and it was assessed for the properties required for biomaterials. Scanning electron microscopy images showed that the electrospun fibers were formed without beads, and the majority of the fibers had diameters in the range of 500–900 nm. The scaffold started to decompose at 210 °C, which is higher than the temperature used for sterilization of the scaffold. The PBS uptake percentage was found to be 400 %, which is sufficient for the absorption of the medium used during cell culture. The scaffold had a hemolysis value of less than 5 %, which indicates that the scaffold exhibits good blood compatibility. The MTT assay showed cell viability of more than 80 % after 24 h and 48 h, and fluorescence microscopy showed that cells adhered and spread on the surface of the scaffold. The results show that muga silk electrospun mat can be used as an ideal biomaterial.


Corresponding author: Subramanian Sundaramoorthy, Department of Textile Technology, Anna University, Chennai, India, E-mail: 

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Contributon of authors: Subramanian Sundaramoorthy – Conceptualization, Design of experiment, interpretation of results, guidance in manuscript preparation Karthic KumarBalan – Interpretation of results, manuscript preparation Saravanan Ramaiyan Alwar – manuscript preparation Caraline I – Conducting experiment and analyzis Gowri S – Conducting experiment and analyzis Kavitha S – Conducting experiment and analyzis.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Kar, S.; Talukdar, S.; Pal, S.; Nayak, S.; Paranjape, P.; Kundu, S. C. Silk Gland Fibroin from Indian Muga Silkworm Antheraea Assama as Potential Biomaterial. Tissue Eng. Regener. Med. 2013, 10, 200–210. https://doi.org/10.1007/s13770-012-0008-6.Suche in Google Scholar

2. Stoppel, W. L.; Raia, N.; Kimmerling, E.; Wang, S.; Ghezzi, C. E.; Kaplan, D. L. Silk Biomaterials. In Comprehensive Biomaterials II; Ducheyne, P.; Healy, K.; Hutmacher, D. W.; Grainger, D. W.; Kirkpatrick, C. J., Eds.; Elsevier: Amsterdam, 2017; pp. 253–278.10.1016/B978-0-12-803581-8.10247-4Suche in Google Scholar

3. Jasmine, S.; Mandal, B. B. Types and Properties of Non-mulberry Silk Biomaterials for Tissue Engineering Applications. In Silk Biomaterials for Tissue Engineering and Regenerative Medicine; Kundu, S. C., Ed.; Woodhead Publishing, 2014; pp. 275–298.10.1533/9780857097064.2.275Suche in Google Scholar

4. Bhardwaj, N.; Rajkhowa, R.; Wang, X.; Devi, D. Milled Non-mulberry Silk Fibroin Microparticles as Biomaterial for Biomedical Applications. Int. J. Biol. Macromol. 2015, 81C, 31–40. https://doi.org/10.1016/j.ijbiomac.2015.07.049.Suche in Google Scholar PubMed

5. Chen, J. P.; Chen, S. H.; Lai, G. J. Preparation and Characterization of Biomimetic Silk Fibroin/chitosan Composite Nanofibers by Electrospinning for Osteoblasts Culture. Nanoscale Res. Lett. 2012, 7, 170. https://doi.org/10.1186/1556-276x-7-170.Suche in Google Scholar

6. Muthumanickkam, A.; Subramanian, S. Studies on Electrospun Eri Silk Fibroin Scaffold for Biomedical Applications. Ph.D. Thesis; Anna University: India, 2012.Suche in Google Scholar

7. Muthumanickkam, A.; Subramanian, S.; Goweri, M.; Beaula, W. S.; Ganesh, V. Iran. Polym. J. 2013, 22, 143–154. https://doi.org/10.1007/s13726-012-0113-3.Suche in Google Scholar

8. Srivastava, C. M.; Purwar, R. Fabrication of Robust Antheraea Assama Fibroin Nanofibrous Mat Using Ionic Liquid for Skin Tissue Engineering. Mater. Sci. Eng.: C 2016, 68, 276–290. https://doi.org/10.1016/j.msec.2016.05.020.Suche in Google Scholar PubMed

9. Bhardwaj, N.; Singh, Y. P.; Devi, D.; Kandimalla, R.; Kotoky, J.; Mandal, B. B. Potential of Silk Fibroin/chondrocyte Constructs of Muga Silkworm Antheraea Assamensis for Cartilage Tissue Engineering. J. Mater. Chem. B 2016, 4, 3670–3684. https://doi.org/10.1039/c6tb00717a.Suche in Google Scholar PubMed

10. Kundu, B.; Kundu, S. C. Bio-inspired Fabrication of Fibroin Cryogels from the Muga Silkworm Antheraea Assamensis for Liver Tissue Engineering. Biomed. Mater. 2013, 8. https://doi.org/10.1088/1748-6041/8/5/055003.Suche in Google Scholar PubMed

11. Kasoju, N.; Bora, U. Antheraea Assama Silk Fibroin-Based Functional Scaffold with Enhanced Blood Compatibility for Tissue Engineering Applications. Adv. Eng. Mater. 2010, 12, 139–147. https://doi.org/10.1002/adem.200980055.Suche in Google Scholar

12. Terzioğlu, P. Electrospun Chitosan/Gelatin/Nano-CaCO3 Hybrid Nanofibers for Potential Tissue Engineering Applications. J. Nat. Fibers 2021, 18, 1207–1216. https://doi.org/10.1080/15440478.2020.1870639.Suche in Google Scholar

13. Rezaie, M.; Nemati, N. H.; Mehrabani, D.; Komeili, A. Skin Regeneration by Hybrid Carboxyl Methyl Cellulose/Calcium Alginate Fibers Electrospun Scaffold. J. Nat. Fibers 2022, 19, 10723–10736. https://doi.org/10.1080/15440478.2021.2002764.Suche in Google Scholar

14. Higuchi, A.; Ling, Q. D.; Chang, Y.; Hsu, S. T.; Umezawa, A. Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chem. Rev. 2013, 113, 3297–3328. https://doi.org/10.1021/cr300426x.Suche in Google Scholar

15. Singh, B. N.; Panda, N. N.; Mund, R.; Pramanik, K. Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold with Enhanced Biomimetic Potential for Bone Tissue Engineering Application. Carbohydr. Polym. 2016, 20, 335–347. https://doi.org/10.1016/j.carbpol.2016.05.088.Suche in Google Scholar

16. Rajkhowa, R.; Wang, L.; Kanwar, J. R.; Wang, X. Molecular Weight and Secondary Structure Change in Eri Silk during Alkali Degumming and Powdering. J. Appl. Polym. Sci. 2011, 119, 1339–1347. https://doi.org/10.1002/app.31981.Suche in Google Scholar

17. Simchuer, W.; Phromnut, N.; Intarasorn, S.; Srihanam, P. The Properties of Eri (Samia Ricini) Silk Fibroin Fibers: Effect of Different Organic Solvents. Int. J. Appl. Chem. 2010, 6, 373–382.Suche in Google Scholar

18. Freddi, G.; Pessina, G.; Tsukada, M. Swelling and Dissolution of Silk Fibroin (Bombyx mori) in N-Methyl Morpholine N-Oxide. J. Biol. Macromol. 1999, 24, 251–263. https://doi.org/10.1016/s0141-8130(98)00087-7.Suche in Google Scholar

19. Freddi, G.; Tsukada, M.; Berett, S. Structure and Physical Properties of Silk Fibroin/polyacrylamide Blend Films. J. Appl. Polym. Sci. 1999, 71, 1563–1571. https://doi.org/10.1002/(sici)1097-4628(19990307)71:10<1563::aid-app4>3.0.co;2-e.10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-ESuche in Google Scholar

20. Viswanathan, P.; Ondeck, M. G.; Chirasatitsin, S.; Ngamkham, K.; Reilly, G. C.; Engler, B. G. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation. Biomaterials 2015, 52, 140–147. https://doi.org/10.1016/j.biomaterials.2015.01.034.Suche in Google Scholar

21. Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005, 310, 1139–1143. https://doi.org/10.1126/science.1116995.Suche in Google Scholar

Received: 2023-09-05
Accepted: 2024-02-29
Published Online: 2024-07-31
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0269/html
Button zum nach oben scrollen