Abstract
In this research, a three-component composite was synthesized by using carbon nanotube as the background phase. Iron oxide phase with high magnetization and low coercivity (with particle size of 200 nm) has been coated on the carbon nanotubes. Then, the silver nanoparticles were coated on a conductive and magnetized substrate by an ultrasonic method. Semiconductor photocatalys is a favorable route for the degradation of organic pollutants. Ultraviolet–visible spectrophotometry has been used to investigate the photocatalytic properties of synthesized nanocomposite and control of their dye degradation on methyl blue, methyl orange and methyl red. The obtained nanocomposite is easily collected due to its magnetic property and does not pose a risk to environmental waters. The dye degradation degree has been compared for the produced nanocomposite. The experimental results confirmed that methyl red shows the greatest amount of degradation within 1 h, which was about 90 %, methyl orange shows about 80 %, and methyl blue shows the lowest degradation, around 60 %.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Alivov, Y.; Singh, V.; Ding, Y.; Cerkovnik, L. J.; Nagpal, P. Nanoscale 2014, 6, 10839. https://doi.org/10.1039/c4nr02417f.Search in Google Scholar PubMed
2. Lu, W.; Xu, T.; Wang, Y.; Hu, H.; Li, N.; Jiang, X.; Chen, W. Appl. Catal. B Environ. 2016, 180, 20. https://doi.org/10.1016/j.apcatb.2015.06.009.Search in Google Scholar
3. Eghbali-Arani, M.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Pourmasoud, S. Ultrason. Sonochem. 2018, 43, 120. https://doi.org/10.1016/j.ultsonch.2017.11.040.Search in Google Scholar PubMed
4. Madhavan, J.; Maruthamuthu, P.; Murugesan, S.; Anandan, S. Appl. Catal. B Environ. 2008, 83, 8. https://doi.org/10.1016/j.apcatb.2008.01.021.Search in Google Scholar
5. Ma, Z.; Lin, F.; Liu, L.; Hu, B.; Wang, S.; Yu, S.; Wang, X. Efficient Decontamination of Organic Pollutants from Wastewater by Covalent Organic Framework-Based Materials. Sci. Total Environ. 2023, 901, 166453. https://doi.org/10.1016/j.scitotenv.2023.166453.Search in Google Scholar PubMed
6. Fang, L.; Huang, T.; Lu, H.; Wu, X.-L.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Zhuang, L.; Hu, B.; Wang, X. Biochar-Based Materials in Environmental Pollutant Elimination, H2 Production and CO2 Capture Applications. Biochar 2023, 5, 42–66. https://doi.org/10.1007/s42773-023-00237-7.Search in Google Scholar
7. Liu, X.; Li, Y.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Wang, X. Recent Progress of Covalent Organic Frameworks Membranes: Design, Synthesis, and Application in Water Treatment. Eco-Environ. Health 2023, 2 (3), 117–130. https://doi.org/10.1016/j.eehl.2023.07.001.Search in Google Scholar PubMed PubMed Central
8. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106 (3), 1105–1136. https://doi.org/10.1021/cr050569o.Search in Google Scholar PubMed
9. Sivashankar, R.; Sathya, A.; Vasantharaj, K.; Sivasubramanian, V. Magnetic Composite an Environmental Super Adsorbent for Dye Sequestration–A Review. Environ. Nanotechnol. Monit. Manag. 2014, 1, 36–49. https://doi.org/10.1016/j.enmm.2014.06.001.Search in Google Scholar
10. Samadi, S.; Khalili, E.; Allahgholi Ghasri, M. R. Degradation of Methyl Red under Visible Light Using N,F-TiO2/SiO2/rGO Nanocomposite. J. Electron. Mater. 2019, 48, 7836–7845. https://doi.org/10.1007/s11664-019-07585-w.Search in Google Scholar
11. Shelke, S. N.; Bankar, S. R.; Mhaske, G. R.; Kadam, S. S.; Murade, D. K.; Bhorkade, S. B.; Rathi, A. K.; Bundaleski, N.; Teodoro, O. M. N. D.; Zboril, R.; Varma, R. S.; Gawande, M. B. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-Type Condensation Reactions. ACS Sustain. Chem. Eng. 2014, 2, 1699–1706. https://doi.org/10.1021/sc500160f.Search in Google Scholar
12. Singamaneni, S.; Bliznyuk, V. N.; Binek, C.; Tsymbal, E. Y. Magnetic Nanoparticles: Recent Advances in Synthesis, Self-Assembly and Applications. J. Mater. Chem. 2011, 21, 16819–16845. https://doi.org/10.1039/c1jm11845e.Search in Google Scholar
13. Chirita, M.; Grozescu, I. Fe2O3 – Nanoparticles, Physical Properties and Their Photochemical and Photoelectrochemical Applications. Chem. Bull. Politeh. Univ Timsisoara 2009, 54, 1–8.Search in Google Scholar
14. Shukla, S.; Khan, R.; Daverey, A. Environ. Technol. Innov. 2021, 24, 101924. https://doi.org/10.1016/j.eti.2021.101924.Search in Google Scholar
15. Aragaw, T. A.; Bogale, F. M.; Aragaw, B. A. J. Saudi Chem. Soc. 2021, 25, 101280. https://doi.org/10.1016/j.jscs.2021.101280.Search in Google Scholar
16. El-Sheikh, A. H.; Qawariq, R. F.; Abdelghani, J. I. Adsorption and Magnetic Solid-Phase Extraction of NSAIDs from Pharmaceutical Wastewater Using Magnetic Carbon Nanotubes: Effect of Sorbent Dimensions, Magnetite Loading and Competitive Adsorption Study. Environ. Technol. Innov. 2019, 16, 100496. https://doi.org/10.1016/j.eti.2019.100496.Search in Google Scholar
17. Sankar Sana, S.; Haldhar, R.; Parameswaranpillai, J.; Chavali, M.; Kim, S.-C. Clean. Mater. 2022, 6, 100161. https://doi.org/10.1016/j.clema.2022.100161.Search in Google Scholar
18. Jaspal, D.; Malviya, A. Chemosphere 2020, 246, 125788. https://doi.org/10.1016/j.chemosphere.2019.125788.Search in Google Scholar PubMed
19. Marimuthu, S.; Antonisamy, A. J.; Malayandi, S.; Rajendran, K.; Tsai, P. C.; Pugazhendhi, A.; Ponnusamy, V. K. Silver Nanoparticles in Dye Effluent Treatment: A Review on Synthesis, Treatment Methods, Mechanisms, Photocatalytic Degradation, Toxic Effects and Mitigation of Toxicity. J. Photochem. Photobiol. B Biol. 2020, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823.Search in Google Scholar PubMed
20. Ramalingam, B.; Khan, M. M. R.; Mondal, B.; Mandal, A. B.; Das, S. K. Facile Synthesis of Silver Nanoparticles Decorated Magnetic-Chitosan Microsphere for Efficient Removal of Dyes and Microbial Contaminants. ACS Sustain. Chem. Eng. 2015, 3 (9), 2291–2302. https://doi.org/10.1021/acssuschemeng.5b00577.Search in Google Scholar
21. Jamjoum, H. A. A.; Umar, K.; Adnan, R.; Razali, M. R.; Mohamad Ibrahim, M. N. Synthesis, Characterization, and Photocatalytic Activities of Graphene Oxide/Metal Oxides Nanocomposites: A Review. Front. Chem. 2021, 9, 752276. https://doi.org/10.3389/fchem.2021.752276.Search in Google Scholar PubMed PubMed Central
22. Sharma, V. K.; McDonald, T. J.; Kim, H.; Garg, V. K. Adv. Colloid Interface Sci. 2015, 225, 229. https://doi.org/10.1016/j.cis.2015.10.006.Search in Google Scholar PubMed
23. Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. Chem. Eng. J. 2016, 299, 244. https://doi.org/10.1016/j.cej.2016.04.051.Search in Google Scholar
24. Fischer, A. R.; Werner, P.; Goss, K. U. Photodegradation of Malachite Green and Malachite Green Carbinol under Irradiation with Different Wavelength Ranges. Chemosphere 2011, 82, 210–214. https://doi.org/10.1016/j.chemosphere.2010.10.019.Search in Google Scholar PubMed
25. Melo, M. J.; Nabais, P.; Vieira, M.; Araújo, R.; Otero, V.; Lopes, J.; Martín, L. Between Past and Future: Advanced Studies of Ancient Colours to Safeguard Cultural Heritage and New Sustainable Applications. Dyes Pigments 2022, 208, 110815. https://doi.org/10.1016/J.DYEPIG.2022.110815.Search in Google Scholar
26. Guerra, E.; Gosetti, F.; Marengo, E.; Llompart, M.; Garcia-Jares, C. Study of Photostability of Three Synthetic Dyes Commonly Used in Mouthwashes. Microchem. J. 2019, 146, 776–781. https://doi.org/10.1016/J.MICROC.2019.02.002.Search in Google Scholar
27. Liu, H.; Guo, W.; Li, Y.; He, S.; He, C. Photocatalytic Degradation of Sixteen Organic Dyes by TiO2/WO3-Coated Magnetic Nanoparticles Under Simulated Visible Light and Solar Light. J. Environ. Chem. Eng. 2018, 6, 59–67. https://doi.org/10.1016/j.jece.2017.11.063.Search in Google Scholar
28. Thota, S.; Rao Tirukkovalluri, S.; Bojja, S. Visible Light Induced Photocatalytic Degradation of Methyl Red with Codoped Titania. J. Catal. 2014, 2014, 962419. https://doi.org/10.1155/2014/962419.Search in Google Scholar
29. Naikwade, A. G.; Jagadale, M. B.; Kale, D. P.; Gophane, A. D.; Garadkar, K. M.; Rashinkar, G. S. Photocatalytic Degradation of Methyl Orange by Magnetically Retrievable Supported Ionic Liquid Phase Photocatalyst. ACS Omega 2020, 5, 131–144. https://doi.org/10.1021/acsomega.9b02040.Search in Google Scholar PubMed PubMed Central
30. Rani, A.; Singh, K.; Patel, A. S.; Sharma, P. Factors Affecting Photocatalytic Degradation of Methyl Red by MoS2 Nanostructures Prepared by Hydrothermal Technique. Bull. Mater. Sci. 2023, 46, 94. https://doi.org/10.1007/s12034-023-02929-z.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde