Home Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
Article
Licensed
Unlicensed Requires Authentication

Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet

  • Partha P. Pal and Soumyajit Sarkar ORCID logo EMAIL logo
Published/Copyright: July 24, 2024
Become an author with De Gruyter Brill

Abstract

This paper reports the photoluminescence studies of pure polycrystalline nano-sized gadolinium gallium garnet (Gd3Ga5O12, GGG) powders synthesized by the method of co-precipitation using ammonium hydrogen carbonate (NH4HCO3, AHC) as the precipitant. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, ultraviolet, visible, near-infrared (UV–Vis–NIR) spectroscopy and photoluminescence studies. The X-ray diffraction analysis confirms the formation of cubic structure of gadolinium gallium garnet (Gd3Ga5O12). The average particle sizes are found to be in the range of approximately 19 nm–88 nm, for different calcining temperatures. The formation of gadolinium gallium garnet is also confirmed by Fourier transform infrared studies. Scanning electron microscopy image measurement confirms the formation of nanosized particles. The photoluminescence studies of the pure gadolinium gallium garnet sample shows emission peaks around at 441 nm for an excitation wavelength of 350 nm for the sample calcined at 1,100 °C.


Corresponding author: Soumyajit Sarkar, Department of Physics, Brainware University, 398, Ramkrishnapur Road, Barasat, Kolkata 700125, India, E-mail:

Acknowledgments

The authors would like to thank Prof. J. Manam and Dr. S. K Sharma, IIT(ISM) Dhanbad for technical facilities, Mr. S. Som for PL studies, Mr. S. Nath for SEM and Mr. S. Mandal, Technical Staff, IIT(ISM) Dhanbad for technical supports. SS thanks Science and Engineering Research Board (SERB) for the support through the start-up research grant (SRG/2023/000122).

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Luo, Z.; Lu, M.; Bao, J.; Liu, W.; Gao, C. Co-precipitation Synthesis of Gadolinium Gallium Garnet Powders Using Ammonium Hydrogen Carbonate as the Precipitant. Mater. Lett. 2005, 59 (10), 1188–1191. https://doi.org/10.1016/j.matlet.2004.12.025.Search in Google Scholar

2. Pardavi-Horvath, M. Defects and Their Avoidance in LPE of Garnets. Prog. Cryst. Growth Charact. 1982, 5 (3), 175–220. https://doi.org/10.1016/0146-3535(82)90016-8.Search in Google Scholar

3. Miller, D. C.; Valentino, A. J.; Shick, L. K. The Effect of Melt Flow Phenomena on the Perfection of Czochralski Grown Gadolinium Gallium Garnet. J. Cryst. Growth 1978, 44 (2), 121–134. https://doi.org/10.1016/0022-0248(78)90185-9.Search in Google Scholar

4. Yu, F. P.; Yuan, D. R.; Duan, X. L.; Guo, S. Y.; Wang, X. Q.; Cheng, X. F.; Kong, L. M. A Simple Process to Synthesize Sphere-Shaped Gadolinium Gallium Garnet Nanoparticles for Transparent Ceramic. J. Alloys Compd. 2008, 465 (1–2), 567–570. https://doi.org/10.1016/j.jallcom.2007.11.008.Search in Google Scholar

5. Xiao, Q.; Derby, J. J. Heat Transfer and Interface Inversion during the Czochralski Growth of Yttrium Aluminum Garnet and Gadolinium Gallium Garnet. J. Cryst. Growth 1994, 139 (1–2), 147–157. https://doi.org/10.1016/0022-0248(94)90039-6.Search in Google Scholar

6. Wood, D. L.; Nassau, K. Optical Properties of Gadolinium Gallium Garnet. Appl. Opt. 1990, 29 (25), 3704–3707. https://doi.org/10.1364/AO.29.003704.Search in Google Scholar PubMed

7. Brandle, C. D.; Miller, D. C.; Nielsen, J. W. The Elimination of Defects in Czochralski Grown Rare-Earth Gallium Garnets. J. Cryst. Growth 1972, 12 (3), 195. https://doi.org/10.1016/0022-0248(72)90003-6.Search in Google Scholar

8. Hellstrom, E. E.; Ray II, R. D.; Zhang, C. Preparation of Gadolinium Gallium Garnet [Gd3Ga5O12] by Solid-State Reaction of the Oxides. J. Am. Ceram. Soc. 1989, 72 (8), 1376. https://doi.org/10.1111/j.1151-2916.1989.tb07656.x.Search in Google Scholar

9. Li, X.; Hu, Z. G.; Li, J. Nanostructured GGG Powders via Gel Combustion. Opt. Mater. 2007, 29 (7), 854–857. https://doi.org/10.1016/j.optmat.2006.01.010.Search in Google Scholar

10. Zhao, G.; Li, T.; He, X.; Xu, J. Preparation of Gadolinium Gallium Garnet Polycrystalline Material by Coprecipitation Method. Mater. Lett. 2002, 56 (6), 1098–1102. https://doi.org/10.1016/S0167-577X(02)00686-9.Search in Google Scholar

11. Pandozzi, F.; Vetrone, F.; Boyer, J. C.; Naccache, R.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. A. Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+, Yb3+ Nanocrystals. J. Phys. Chem. B 2005, 109 (37), 17400. https://doi.org/10.1021/jp052192w.Search in Google Scholar PubMed

12. Naccache, R.; Vetrone, F.; Speghini, A.; Bettinelli, M.; Capobianco, J. A. Cross-relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship. J. Phys. Chem. C 2008, 112 (20), 7750–7756. https://doi.org/10.1021/jp711494d.Search in Google Scholar

13. Thirumalaisamy, T. K.; Saravanakumar, S.; Butkute, S.; Kareiva, A.; Saravanan, R. J. Mater. Sci.: Mater. Electron. 2016, 27, 1920–1928. https://doi.org/10.1007/s10854-015-3974-3.Search in Google Scholar

14. Wang, G.; Li, X.; Geng, Y. Preparation of Gadolinium Gallium Garnet Polycrystalline Powders for Transparent Ceramics. J. Alloys Compd. 2010, 505 (1), 213–216. https://doi.org/10.1016/j.jallcom.2010.06.031.Search in Google Scholar

15. Pang, M.; Lin, J. Growth and Optical Properties of Nanocrystalline Gd3Ga5O12: Ln (Ln = Eu3+, Tb3+, Er3+) Powders and Thin Films via Pechini Sol–Gel Process. J. Cryst. Growth 2005, 284 (1–2), 262–269. https://doi.org/10.1016/j.jcrysgro.2005.07.007.Search in Google Scholar

16. Jia, T.; Wang, W.; Long, F.; Fu, Z.; Wang, H.; Zhang, Q. Fabrication, Characterization and Photocatalytic Activity of La-Doped ZnO Nanowires. J. Alloys Compd. 2009, 484 (1–2), 410–415. https://doi.org/10.1016/j.jallcom.2009.04.153.Search in Google Scholar

17. Pal, P. P.; Manam, J. Color Tunable ZnO Nanorods by Eu3+ and Tb3+ Co-doping for Optoelectronic Applications. Appl. Phys. A 2014, 116, 213–223. https://doi.org/10.1007/s00339-013-8095-3.Search in Google Scholar

18. Ghimire, K.; Haneef, H. F.; Collins, R. W.; Podraza, N. J. Optical Properties of Single-Crystal Gd3Ga5O12 from the Infrared to Ultraviolet. Phys. Status Solidi B 2015, 252 (10), 2191–2198. https://doi.org/10.1002/pssb.201552115.Search in Google Scholar

19. Vasil’eva, N. V.; Gochelashvili, K. S.; Zemskov, M. E.; Kondratyuk, V. A.; Randoshkin, V. V. Luminescence of Bulk and Thin-Film Single Crystals of Gadolinium Gallium Garnet Excited by UV Radiation. Tech. Phys. Lett. 2005, 31, 106–107. https://doi.org/10.1134/1.1877616.Search in Google Scholar

20. Krsmanović, R.; Morozov, V. A.; Lebedev, O. I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G. Structural and Luminescence Investigation on Gadolinium Gallium Garnet Nanocrystalline Powders Prepared by Solution Combustion Synthesis. Nanotechnology 2007, 18, 325604. https://doi.org/10.1088/0957-4484/18/32/325604.Search in Google Scholar

21. Randoshkin, V. V.; Vasil’eva, N. V.; Plotnichenko, V. G.; Pyrkov, Y. N.; Lavrishchev, S. V.; Ivanov, M. A.; Kiryukhin, A. A.; Saletskii, A. M.; Sysoev, N. N. Optical Absorption by Nd3+ and Gd3+ Ions in Epitaxial Films Grown on Gd3Ga5O12 Substrates from a Lead-Containing Solution Melt. Phys. Solid State 2004, 46, 1030–1036. https://doi.org/10.1134/1.1767239.Search in Google Scholar

Received: 2023-12-20
Accepted: 2024-04-16
Published Online: 2024-07-24
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0371/html
Scroll to top button