Home Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
Article
Licensed
Unlicensed Requires Authentication

Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles

  • Buvana Sampath and Julie Charles ORCID logo EMAIL logo
Published/Copyright: July 26, 2024
Become an author with De Gruyter Brill

Abstract

Antibiotic overuse has caused a variety of bacterial pathogens to develop new resistance mechanisms. As a result, discovering an appropriate replacement for the standard antibiotics has become an immediate concern. The present work demonstrates a facile, eco-friendly and economical method for the synthesis of hexagonal wurtzite zinc oxide nanoparticles (ω-ZONPs) using the ethanolic extract of triphala. Gas chromatography–mass spectrometry analysis of the triphala extract proved the presence of certain secondary metabolites, which aids in the formation of ω-ZONPs. The influence of annealing temperature on the antibacterial action of as-synthesized ω-ZONPs was studied for three different annealing temperatures. X-ray diffraction, dynamic light scattering, field emission electron microscopy and energy dispersive X-ray spectroscopy analyses were used to examine the impact of annealing temperature on the structure, particle size and morphology of ω-ZONPs. Fourier transform infrared spectra revealed the change in intensity of the characteristic peaks in ω-ZONPs with different annealing temperatures. From UV–Visible diffuse reflectance spectroscopy, variation in the band gap of ω-ZONPs with increasing annealing temperature was detected. Kirby Bauer disc diffusion was adopted to examine the antibacterial potential of ω-ZONPs against bacterial strains such as Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. The ω-ZONPs annealed at 200 °C inhibited the growth of three bacterial pathogens, E. coli, B. subtilis and P. aeruginosa and exhibited effective antibacterial activity in comparison with ω-ZONPs annealed at relatively high temperatures. Thus, the antibacterial potential of ω-ZONPs could be further explored as disease controlling agents and such prototypes could be made available for commercial mass production.


Corresponding author: Julie Charles, Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, 603110, Tamil Nadu, India, E-mail: 

Acknowledgments

The authors (Buvana S and Julie Charles) are thankful to the management of Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, for providing the necessary infrastructural facilities and financial support for the current research work.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Buvana S – Synthesis, Experimental investigation, Interpretation of results, Analysis of results, Writing – original draft. Julie Charles – Conceptualization, Methodology, Supervision, Validation of experimental results, Writing – review and editing.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Mohd Yusof, H.; Abdul Rahman, N.; Mohamad, R.; Hasanah Zaidan, U.; Samsudin, A. A. Animals 2021, 11, 2093. https://doi.org/10.3390/ani11072093.Search in Google Scholar PubMed PubMed Central

2. da Silva, B. L.; Abuçafy, M. P.; Manaia, E. B.; Junior, J. A. O.; Chiari-Andréo, B. G.; Pietro, R. C. L. R.; Chiavacci, L. A. Int. J. Nanomed. 2019, 14, 9395. https://doi.org/10.2147/IJN.S216204.Search in Google Scholar PubMed PubMed Central

3. Hamrayev, H.; Shameli, K.; Korpayev, S. J. Res. Nanosci. Nanotechnol. 2021, 1, 62. https://doi.org/10.37934/jrnn.1.1.6274.Search in Google Scholar

4. Mandal, A. K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Bhandari, D. P.; Shah, A. K.; Bhattarai, N.; Parajuli, N. Nanomater 2022, 12, 3066. https://doi.org/10.3390/nano12173066.Search in Google Scholar PubMed PubMed Central

5. Liu, J.; Wang, Y.; Ma, J.; Peng, Y.; Wang, A. J. Alloys Compd. 2019, 783, 898. https://doi.org/10.1016/j.jallcom.2018.12.330.Search in Google Scholar

6. Gudkov, S. V.; Burmistrov, D. E.; Serov, D. A.; Rebezov, M. B.; Semenova, A. A.; Lisitsyn, A. B. Front. Phys. 2021, 9, 641481. https://doi.org/10.3389/fphy.2021.641481.Search in Google Scholar

7. Murali, M.; Kalegowda, N.; Gowtham, H. G.; Ansari, M. A.; Alomary, M. N.; Alghamdi, S.; Shilpa, N.; Singh, S. B.; Thriveni, M. C.; Aiyaz, M.; Angaswamy, N.; Lakshmidevi, N.; Adil, S. F.; Hatshan, M. R.; Amruthesh, K. N. Pharmaceutics 2021, 13, 1662. https://doi.org/10.3390/pharmaceutics13101662.Search in Google Scholar PubMed PubMed Central

8. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Nanomicro Lett. 2015, 7, 219. https://doi.org/10.1007/s40820-015-0040-x.Search in Google Scholar PubMed PubMed Central

9. De Souza, R. C.; Haberbeck, L. U.; Riella, H. G.; Ribeiro, D. H. B.; Carciofi, B. A. M. Braz. J. Chem. Eng. 2019, 36, 885. https://doi.org/10.1590/0104-6632.20190362s20180027.Search in Google Scholar

10. Soltanian, S.; Sheikhbahaei, M.; Mohamadi, N.; Pabarja, A.; Fekri, M.; Abadi, S.; Hossein, M.; Tahroudi, M. Bionanoscience 2021, 11, 245. https://doi.org/10.1007/s12668-020-00816-z.Search in Google Scholar

11. Prabhu, S.; Thangaian, D. T.; Bharathy, P. V. Nano Biomed. Eng. 2021, 13, 394. https://doi.org/10.5101/nbe.v13i4.p394-400.Search in Google Scholar

12. Ozdal, M.; Gurkok, S. ADMET DMPK 2022, 10, 115. https://doi.org/10.5599/admet.1172.Search in Google Scholar PubMed PubMed Central

13. Slavin, Y. N.; Asnis, J.; Häfeli, U. O.; Bach, H. J. Nanobiotechnol. 2017, 15, 1. https://doi.org/10.1186/s12951-017-0308-z.Search in Google Scholar PubMed PubMed Central

14. Correa, M. G.; Martínez, F. B.; Vidal, C. P.; Streitt, C.; Escrig, J.; de Dicastillo, C. L. Beilstein J. Nanotechnol. 2020, 11, 1450. https://doi.org/10.3762/BJNANO.11.129.Search in Google Scholar

15. Anuradha, C. T.; Raji, P. Mater. Res. Express 2019, 6, 095063. https://doi.org/10.1088/2053-1591/ab2f9e.Search in Google Scholar

16. Seid, E. T.; Dejene, F. B. Opt. Mater. Express 2020, 10, 2849. https://doi.org/10.1364/ome.400912.Search in Google Scholar

17. Alavi, M.; Karimi, N.; Salimikia, I. J. Ind. Eng. Chem. 2019, 72, 457. https://doi.org/10.1016/j.jiec.2019.01.002.Search in Google Scholar

18. Shobha, B.; Lakshmeesha, T. R.; Ansari, M. A.; Almatroudi, A.; Alzohairy, M. A.; Basavaraju, S.; Alurappa, R.; Niranjana, S. R.; Chowdappa, S. J. Fungi 2020, 6, 1. https://doi.org/10.3390/jof6030181.Search in Google Scholar PubMed PubMed Central

19. Joghee, S.; Ganeshan, P.; Vincent, A.; Hong, S. I. Bionanosci 2019, 9, 141. https://doi.org/10.1007/s12668-018-0573-9.Search in Google Scholar

20. Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R. K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Materials 2018, 11, 940. https://doi.org/10.3390/ma11060940.Search in Google Scholar PubMed PubMed Central

21. Raoufi, D. J. Lumin. 2013, 134, 213. https://doi.org/10.1016/j.jlumin.2012.08.045.Search in Google Scholar

22. Kasi, G.; Viswanathan, K.; Seo, J. Ceram. Int. 2019, 45, 3230. https://doi.org/10.1016/j.ceramint.2018.10.226.Search in Google Scholar

23. Anwar, H.; Naqvi, S. M. B.; Abbas, B.; Shahid, M.; Iqbal, M.; Shaharyar, M.; Islam, A.; Batool, F.; Khalid, M.; Jamil, A.; Optoelectron, J. Biomed. Mater. 2020, 12, 43. https://doi.org/10.15251/jobm.2020.122.43.Search in Google Scholar

24. He, Q.; Zhu, C.; Liu, Y.; Yan, W.; Wan, X.; Li, G. J. Mater. Res. Technol. 2023, 23, 4454. https://doi.org/10.1016/j.jmrt.2023.02.079.Search in Google Scholar

25. Priyadarshini, P.; Das, S.; Alagarasan, D.; Ganesan, R.; Varadharajaperumal, S.; Naik, R. Sci. Rep. 2021, 11, 21518. https://doi.org/10.1038/s41598-021-01134-4.Search in Google Scholar PubMed PubMed Central

26. Bharathi, D.; Diviya Josebin, M.; Vasantharaj, S.; Bhuvaneshwari, V. J. Nanostruct. Chem. 2018, 8, 83. https://doi.org/10.1007/s40097-018-0256-7.Search in Google Scholar

27. Khamis, M.; Gouda, G. A.; Nagiub, A. M. BMC Chem. 2023, 17, 99. https://doi.org/10.1186/s13065-023-01012-2.Search in Google Scholar PubMed PubMed Central

28. Chattopadhyay, A.; Nayak, J. Appl. Phys. A: Mater. Sci. Process. 2021, 127, 904. https://doi.org/10.1007/s00339-021-05072-w.Search in Google Scholar

29. Tawfik, E. K.; Eisa, W. H.; Okasha, N.; Ashry, H. A. J. Sci. Res. Sci. 2020, 37, 73. https://doi.org/10.21608/jsrs.2020.129917.Search in Google Scholar

30. Suharyadi, E.; Pratiwi, S. H.; Tedy Indrayana, I. P.; Kato, T.; Iwata, S.; Ohto, K. Mater. Res. Express 2021, 8, 036101. https://doi.org/10.1088/2053-1591/abe986.Search in Google Scholar

31. Shabbir, M.; Islam, S. U.; Bukhari, M. N.; Rather, L. J.; Khan, M. A.; Mohammad, F. Text. Cloth. Sustain. 2017, 2, 1. https://doi.org/10.1186/s40689-016-0011-8.Search in Google Scholar

32. Yan, Z.; Ma, Y.; Wang, D.; Wang, J.; Gao, Z.; Wang, L.; Yu, P.; song, T. Appl. Phys. Lett. 2008, 92. https://doi.org/10.1063/1.2887906.Search in Google Scholar

33. Khairnar, N.; Kwon, H.; Park, S.; Lee, H.; Park, J. Nanomaterials 2023, 13, 2816. https://doi.org/10.3390/nano13212816.Search in Google Scholar PubMed PubMed Central

34. Liu, Y.; Li, M.; Liang, L.; Feng, C.; Zhang, Y.; Liu, X.; Zhao, Y. Opt. Mater. 2022, 128, 112381. https://doi.org/10.1016/j.optmat.2022.112381.Search in Google Scholar

35. Sunny, A.; Akshay, V. R.; Vasundhara, M. AIP Conf. Proc. 2018, 1953. https://doi.org/10.1063/1.5032497.Search in Google Scholar

36. Souri, M.; Ghaemi, N.; Shakeri, A.; Hoseinpour, V. Heath Biotechnol. Biopharma 2017, 1, 39. https://doi.org/10.22034/HBB.2017.10.Search in Google Scholar

37. Gupta, M.; Tomar, R. S.; Kaushik, S.; Mishra, R. K.; Sharma, D. Front. Microbiol. 2018, 9, 2030. https://doi.org/10.3389/fmicb.2018.02030.Search in Google Scholar PubMed PubMed Central

38. Rasha, E.; Monerah, A.; Manal, A.; Rehab, A.; Mohammed, D.; Doaa, E. Molecules 2021, 26, 1919. https://doi.org/10.3390/molecules26071919.Search in Google Scholar PubMed PubMed Central

39. Parthiban, C.; Sundaramurthy, N. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 9710. https://doi.org/10.15680/IJIRSET.2015.0410031.Search in Google Scholar

40. Mohamed, H. E. A.; Afridi, S.; Khalil, A. T.; Zia, D.; Shinwari, Z. K.; Dhlamini, M. S.; Maaza, M. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3241. https://doi.org/10.1007/s10904-020-01490-0.Search in Google Scholar

41. Sadrolhosseini, A. R.; Abdul Rashid, S.; Zakaria, A. J. Nanomater. 2017, 2017. https://doi.org/10.1155/2017/6496390.Search in Google Scholar

42. Zak, A. K.; Abrishami, M. E.; Majid, W. H. A.; Yousefi, R.; Hosseini, S. M. Ceram. Int. 2011, 37, 393. https://doi.org/10.1016/j.ceramint.2010.08.017.Search in Google Scholar

43. Jayappa, M. D.; Ramaiah, C. K.; Kumar, M. A. P.; Suresh, D.; Prabhu, A.; Devasya, R. P.; Sheikh, S. Appl. Nanosci. 2020, 10, 3057. https://doi.org/10.1007/s13204-020-01382-2.Search in Google Scholar PubMed PubMed Central

44. Benabbas, K.; Zabat, N.; Hocini, I. Environ. Sci. Pollut. Res. 2021, 28, 4329. https://doi.org/10.1007/s11356-020-10749-5.Search in Google Scholar PubMed

45. Karam, S. T.; Abdulrahman, A. F. Photonics 2022, 9, 594. https://doi.org/10.3390/photonics9080594.Search in Google Scholar

46. Sedky, A.; Ali, A.; Somaily, H. H.; Algarni, H. Opt. Quantum Electron. 2021, 53, 1. https://doi.org/10.21203/rs.3.rs-269729/v1.Search in Google Scholar

47. Mukesh, M.; Thejas, K. K.; Akshay, V. R.; Arun, B.; Vasundhara, M. AIP Conf. Proc. 2019, 2162, 413618. https://doi.org/10.1063/1.5130301.Search in Google Scholar

48. Mohamad Sukri, S. N. A.; Shameli, K.; Mei-Theng Wong, M.; Teow, S. Y.; Chew, J.; Ismail, N. A. J. Mol. Struct. 2019, 1189, 57. https://doi.org/10.1016/j.molstruc.2019.04.026.Search in Google Scholar

49. Haq, F. A.; Ben Ali, M.; Hedfi, A.; Mezni, A.; Rehman, W.; Waseem, M.; Khan, A. R.; Shaheen, H. Mater. Res. Express 2021, 8, 075009. https://doi.org/10.1088/2053-1591/ac1187.Search in Google Scholar

50. Aisida, S. O.; Ugwu, K.; Akpa, P. A.; Nwanya, A. C.; Ejikeme, P. M.; Botha, S.; Ahmad, I.; Maaza, M.; Ezema, F. I. Mater. Chem. Phys. 2019, 237, 121859. https://doi.org/10.1016/j.matchemphys.2019.121859.Search in Google Scholar

51. Azizi, S.; Mohamad, R.; Bahadoran, A.; Bayat, S.; Rahim, R. A.; Ariff, A.; Saad, W. Z. J. Photochem. Photobiol., B 2016, 161, 441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007.Search in Google Scholar PubMed

52. Kalra, K.; Chhabra, V.; Prasad, N. J. Phys.: Conf. Ser. Inst. Phys. 2022, 2267, 012049. https://doi.org/10.1088/1742-6596/2267/1/012049.Search in Google Scholar

53. Gharpure, S.; Ankamwar, B. J. Nanosci. Nanotechnol. 2020, 20, 5977. https://doi.org/10.1166/jnn.2020.18707.Search in Google Scholar PubMed

54. Ahmadi Shadmehri, A.; Namvar, F. J. Res. Appl. Basic Med. Sci. 2020, 6, 23.Search in Google Scholar

55. Kamarajan, G.; Anburaj, D. B.; Porkalai, V.; Muthuvel, A.; Nedunchezhian, G. J. Niger. Soc. Phys. Sci. 2022, 2022, 892. https://doi.org/10.46481/jnsps.2022.892.Search in Google Scholar

56. Demissie, M. G.; Sabir, F. K.; Edossa, G. D.; Gonfa, B. A. J. Chem. 2020, 2020, 1. https://doi.org/10.1155/2020/7459042.Search in Google Scholar

57. Fouda, A.; Saied, E.; Eid, A. M.; Alemam, F.; Hamza, A. M.; Alharbi, M. F.; Elkelish, M.; Hassan, S. E. D.; Func, J. Biomat 2023, 14, 205. https://doi.org/10.3390/jfb14040205.Search in Google Scholar PubMed PubMed Central

Received: 2023-08-14
Accepted: 2024-03-18
Published Online: 2024-07-26
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0243/html
Scroll to top button