Startseite Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys

  • Chin-Wei Hsu , Sheng-Long Lee ORCID logo , Ping-Chih Kuo und Chih-Ting Wu EMAIL logo
Veröffentlicht/Copyright: 17. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The study investigates how Zr additions and process annealing affect mechanical and corrosion properties of AA5083 Al–Mg alloys by microstructural examination, tensile strength, hardness testing and ASTM G67 nitric acid mass loss test. In the present work, process annealing temperatures were set to 220 °C and 250 °C. The results show that the hardness and tensile properties of Zr-containing cold rolled alloy were superior to that of Zr-free cold rolled alloy before and after process annealing treatment and sensitization heat treatment. Unfortunately, adding Zr to AA5383 alloy significantly degraded the corrosion resistance of the Zr-containing cold rolled alloy annealed at 220 °C. For improving corrosion resistance of Zr-containing alloy, annealing temperature could be increased to 250 °C to avoid a marked drop in the corrosion resistance.


Corresponding author: Chih-Ting Wu, Department of Vehicle Engineering, Army Academy R.O.C., No. 750, Long-Dong Road, Zhongli District, Taoyuan City 32097, Taiwan, R.O.C., E-mail: 

Acknowledgments

The authors would like to thank the financial support provided by National Chung-Shan Institute of Science & Technology.

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Chin-Wei Hsu: Collected the data, performed the experiments, contributed data, and performed the analysis. Sheng-Long Lee: Conceived and designed the analysis. Ping-Chih Kuo: Performed the experiments and contributed data. Chih-Ting Wu: Wrote the paper.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Chung-Shan Institute of Science & Technology (Contract: NCSIST-629-V102(113)).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Lee, S. L.; Chiu, Y. C.; Pan, T. A.; Chen, M. C. Crystals 2021, 11, 926. https://doi.org/10.3390/cryst11080926.Suche in Google Scholar

2. Serkan, T.; Fahrettin, O.; Ilyas, K. J. Mater. Process. Technol. 2008, 207, 1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057.Suche in Google Scholar

3. Chiu, Y. C.; Pan, T. A.; Chen, G. M.; Jiang, X. C.; Bor, H. Y.; Tzeng, Y. C.; Lee, S. L. Molecules 2021, 26, 168. https://doi.org/10.3390/molecules26010168.Suche in Google Scholar PubMed PubMed Central

4. Wu, C. T.; Lee, S. L.; Chen, Y. F.; Bor, H. Y.; Liu, K. H. Materials 2020, 13, 1983. https://doi.org/10.3390/ma13081983.Suche in Google Scholar PubMed PubMed Central

5. Alireza, G. Hydrogen Embrittlement in a 5083 Aluminum Alloy, Ph.D. Thesis, Ibaraki University, Japan, 2020.Suche in Google Scholar

6. Bovard, F. S. Electrochem. Soc. Proc. 2005, 2004-14, 232–243. https://doi.org/10.1002/9781119788867.scard.Suche in Google Scholar

7. Searles, J. L.; Gouma, P. I.; Buchheit, R. G. Metall. Mater. Trans. A 2001, 32, 2859–2867. https://doi.org/10.1007/s11661-001-1036-3.Suche in Google Scholar

8. Oguocha, I. N. A.; Adigun, O. J.; Yannacopoulos, S. Y. J. Mater. Sci. 2008, 43, 4208–4214. https://doi.org/10.1007/s10853-008-2606-1.Suche in Google Scholar

9. Holts, R. L.; Pao, P. S.; Bayles, R. A.; Longazel, T. M.; Goswami, R. Metall. Mater. Trans. A 2012, 43, 2839–2849. https://doi.org/10.1007/BF02662387.Suche in Google Scholar

10. Li, M.; Li, H.; Zhang, Z.; Shi, W.; Liu, J.; Hu, Y.; Wu, Y. Mater. Sci. Technol. 2018, 34, 1246–1251. https://doi.org/10.1080/02670836.2018.1444922.Suche in Google Scholar

11. Norman, A. F.; Prangnell, P. B.; Mcewen, R. S. Acta Mater. 1998, 46, 5715–5732. https://doi.org/10.1016/S1359-6454(98)00257-2.Suche in Google Scholar

12. Yang, D. G.; Li, X. Y.; He, D. G.; Huang, H. Mater. Sci. Eng. A 2013, 561, 226–231. https://doi.org/10.1016/j.msea.2012.11.002.Suche in Google Scholar

13. Croteau, J. R.; Griffiths, S.; Rossell, M. D.; Leinenbach, C.; Kenel, C.; Jansen, V.; Seidman, D. N.; Dunand, D. C.; Vo, N. Q. Acta Mater. 2018, 153, 35–44. https://doi.org/10.1016/j.actamat.2018.04.053.Suche in Google Scholar

14. Belelli, F.; Casati, R.; Andrianopoli, C.; Cuccaro, F.; Vedani, M. J. Alloys Compd. 2022, 924, 166519. https://doi.org/10.1016/j.jallcom.2022.166519.Suche in Google Scholar

15. Lee, Y. B.; Shin, D. H.; Park, K. T.; Won, J. N. Scripta Mater. 2004, 51, 355–359. https://doi.org/10.1016/j.scriptamat.2004.02.037.Suche in Google Scholar

16. Miljana, P.; Endre, R. Mater. Sci. Eng. A 2008, 492, 60–467. https://doi.org/10.1016/j.msea.2008.04.001.Suche in Google Scholar

17. Hashimoto, T.; Ikeda, K.; Miura, S. Mater. Trans. 2023, 64, 1959–1968. https://doi.org/10.2320/matertrans.MT-M2022217.Suche in Google Scholar

18. Mikhaylovskaya, A. V.; Mochugovskiy, A. G.; Levchenko, V. S.; Tabachkova, N. Y.; Mufalo, W.; Portnoy, V. K. Mater. Charact. 2018, 139, 30–37. https://doi.org/10.1016/j.matchar.2018.02.030.Suche in Google Scholar

19. Lee, S. L.; Wu, S. T. Metall. Mater. Trans. A 1987, 18, 1353–1357. https://doi.org/10.1007/BF02646649.Suche in Google Scholar

20. Yang, Z.; Ji, P.; Wu, R.; Wang, Y.; Turakhodjaev, N.; Kudratkhon, B. Int. J. Mater. Res. 2023, 114, 65–76. https://doi.org/10.1515/ijmr-2021-8485.Suche in Google Scholar

Received: 2023-03-30
Accepted: 2024-03-04
Published Online: 2024-07-17
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0119/html
Button zum nach oben scrollen