Abstract
The micro-arc oxidation of TC4 titanium alloy was carried out by adding LuCl3. The effect of LuCl3 addition on the properties of the micro-arc oxidized coatings, and the rate of weight loss by erosion under simulated oil field conditions, were analysed. The results show that the increase of oxidation voltage after the addition of LuCl3 makes the surface structure of the coatings denser. The coating is mainly composed of Rutile TiO2, Anatase TiO2, and a small amount of Lu2O3 phase. The kinetic potential polarization curves showed that the addition of LuCl3 can increase the corrosion potential and decrease the corrosion current density of TC4 titanium alloy, and at the same time reduce the rate of erosion weight loss of micro-arc oxidized coatings under simulated oilfield conditions. The overall performance of the coatings is best when the concentration of LuCl3 is 0.3 g L−1.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The Open Fund of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (2022P4FZG08A); Sichuan Science and Technology Program (2022YFSY0018).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Liu, J. W.; Wang, P.; Tang, Y. T.; Xiong, D.; Sun, X. Y.; Hu, J.; Gong, Z. Y.; Yang, B.; Gong, Y. B.; Xiang, D. Int. J. Electrochem. Sci. 2021, 16, 150919. https://doi.org/10.20964/2021.01.06.Suche in Google Scholar
2. Xie, R.; Lin, N.; Zhou, P.; Zou, J.; Han, P.; Wang, Z.; Tang, B. Appl. Surf. Sci. 2010, 436, 467–476. https://doi.org/10.1016/j.apsusc.2017.12.047.Suche in Google Scholar
3. Wu, W.; Liu, J.; Zhang, Y.; Wang, X. Surf. Eng. 2019, 954–961. https://doi.org/10.1080/02670844.2019.1579400.Suche in Google Scholar
4. Sibum, H. Adv. Eng. Mater. 2003, 393–398. https://doi.org/10.1002/adem.200310092.Suche in Google Scholar
5. Zhi, Z.; Yushan, Z.; Jing, L.; Wanying, L.; Mingqiu, L.; Wenxiang, G.; Taihe, S. Eng. Fail. Anal. 2019, 263–272. https://doi.org/10.1016/j.engfailanal.2018.09.030.Suche in Google Scholar
6. Liu, Q.; Li, N.; Shen, Z.-X.; Zhao, M.-F.; Xie, J.-F.; Zhu, G.-C.; Xu, X.; Yin, C.-X. Sci. Rep. 2022, 12, 4526. https://doi.org/10.1038/s41598-022-08636-9.Suche in Google Scholar PubMed PubMed Central
7. Cheng, Y.-L.; Wu, X.-Q.; Xue, Z.-G.; Matykina, E.; Skeldon, P.; Thompson, G. E. Surf. Coat. Technol. 2013, 129–139. https://doi.org/10.1016/j.surfcoat.2012.12.003.Suche in Google Scholar
8. Martini, C.; Ceschini, L.; Tarterini, F.; Paillard, J. M.; Curran, J. A. Wear 2010, 747–756. https://doi.org/10.1016/j.wear.2010.07.011.Suche in Google Scholar
9. Khorasanian, M.; Dehghan, A.; Shariat, M. H.; Bahrololoom, M. E.; Javadpour, S. Surf. Coat. Technol. 2011, 1495–1502. https://doi.org/10.1016/j.surfcoat.2011.09.038.Suche in Google Scholar
10. Seo, B.; Park, H.-K.; Park, C.-S.; Park, K. Mater. Today Commun. 2023, 105131. https://doi.org/10.1016/j.mtcomm.2022.105131.Suche in Google Scholar
11. Liu, X.; Cui, W.; Wang, Y.; Long, Y.; Liu, F.; Liu, Y. Metals 2022, 12, 702. https://doi.org/10.3390/met12050702.Suche in Google Scholar
12. Wang, P.; Pu, J.; Jia, H. Z.; Wen, J. C.; Xiao, Y. T.; Gong, Z. Y.; Hu, J. Int. J. Electrochem. Sci. 2018, 13, 8995–9006. https://doi.org/10.20964/2018.09.66.Suche in Google Scholar
13. Stojadinović, S.; Vasilić, R.; Petković, M.; Kasalica, B.; Belča, I.; Žekić, A.; Zeković, L. Appl. Surf. Sci. 2013, 226–233. https://doi.org/10.1016/j.apsusc.2012.10.183.Suche in Google Scholar
14. Yao, Z.; Jiang, Z.; Sun, X.; Xin, S.; Wu, Z. Mater. Chem. Phys. 2005, 408–412. https://doi.org/10.1016/j.matchemphys.2005.01.062.Suche in Google Scholar
15. Wang, P.; Wu, T.; Peng, H.; Guo, X. Y. Mater. Lett. 2016, 171–174. https://doi.org/10.1016/j.matlet.2016.02.024.Suche in Google Scholar
16. Zhang, X. L.; Jiang, Z. H.; Yao, Z. P.; Wu, Z. D. Corros. Sci. 2010, 3465–3473. https://doi.org/10.1016/j.corsci.2010.06.017.Suche in Google Scholar
17. Xiong, D.; Wang, P.; Shen, X. W.; Liu, J. W.; Yang, B.; Gong, Y. B.; Gong, Z. Y.; Hu, J.; Xiang, D. Int. J. Electrochem. Sci. 2021, 16. https://doi.org/10.20964/2021.04.19.Suche in Google Scholar
18. Tang, Q.; Qiu, T.; Ni, P.; Zhai, D.; Shen, J. Coatings 2022, 12, 1191. https://doi.org/10.3390/coatings12081191.Suche in Google Scholar
19. Yerokhin, A. L.; Snizhko, L. O.; Gurevina, N. L.; Leyland, A.; Pilkington, A.; Matthews, A. J. Phys. D Appl. Phys. 2003, 36, 2110–2120. https://doi.org/10.1088/0022-3727/36/17/314.Suche in Google Scholar
20. Dunleavy, C. S.; Golosnoy, I. O.; Curran, J. A.; Clyne, T. W. Surf. Coat. Technol. 2009, 203, 3410–3419. https://doi.org/10.1016/j.surfcoat.2009.05.004.Suche in Google Scholar
21. Wenlan, C.; Hailan, S.; Zhenxia, W.; Zhiyong, H.; Xiaoping, L.; Naiming, L. Surf. Technol. 2019, 93. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.07.009.Suche in Google Scholar
22. Teterin, Y. A.; Teterin, A. Y. Russ. Chem. Rev. 2002, 347–381. https://doi.org/10.1070/rc2002v071n05abeh000717.Suche in Google Scholar
23. Sun, Y. Mater. Lett. 2004, 2635–2639. https://doi.org/10.1016/j.matlet.2004.04.001.Suche in Google Scholar
24. Sun, Y. Appl. Surf. Sci. 2004, 328–335. https://doi.org/10.1016/j.apsusc.2004.03.241.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde