Startseite Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite

  • Zonghao Song , Ruiyang Cao , ChenLiang Ruan , Xian Zhang , Shouguo Wang , Meiling Wang , Yongqing Ma EMAIL logo und Ganhong Zheng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We have examined the behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) ferrite close to the transition from ferromagnetic to paramagnetic phases (TC). The findings indicate that at a temperature of TC = 314 K (x = 1.0) and TC = 224 K (x = 1.2), there is a second order magnetic phase transition. We used various methods, including modified Arrott plot, Kouvel–Fisher method, and critical isotherm analysis, to determine the critical exponents which were found to be similar to those expected for the Tricritical Mean-field model (β = 0.288, γ = 1.057, and δ = 4.665) for the x = 1.0 sample. The critical exponents for the x = 1.2 sample (β = 0.771, γ = 1.081, and δ = 2.403) belonged to a different universality class. These results suggest that the replacement of Fe ions with non-magnetic Al ions decreases the Co–Fe, Fe–Fe, Co–Co interaction sites in the CoFe2O4 spinel ferrite, increasing magnetic disorder.


Corresponding authors: Yongqing Ma and Ganhong Zheng, Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, People’s Republic of China, E-mail: (Y. Ma), (G. Zheng)

  1. Research ethics: Not applicable.

  2. Author contributions: Zonghao Song: manuscript composition, Ruiyang Cao: experimental design, ChenLiang Ruan: carrying out measurements, Xian Zhang: carrying out measurements, Shouguo Wang: carrying out measurements, Meiling Wang: carrying out measurements, Yongqing Ma: conception, Ganhong Zheng: conception.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Key Research and Development Program of China (No. 2021YFA1600203) and the National Natural Science Foundation of China (Grant no. U19A2093), the Key Projects of Natural Science Research of Higher Education Institutions of Anhui Province (KJ2021A0975), and the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University. Anhui Province University Excellent Talents Support Program (Grant No. gxyq2022069).

  5. Data availability: Not applicable.

References

1. Henchiri, C.; Mnasri, T.; Benali, A.; Hamdi, R.; Dhahri, E.; Valente, M. A.; Costa, B. O. F. RSC Adv. 2020, 10 (14), 8352–8363. https://doi.org/10.1039/C9RA10469K.Suche in Google Scholar PubMed PubMed Central

2. Kumar, Y.; Sharma, A.; Shirage, P. M. J. Alloys Compd. 2019, 778 (25), 398–409. https://doi.org/10.1016/j.jallcom.2018.11.128.Suche in Google Scholar

3. Elayakumar, K.; Dinesh, A.; Manikandan, A.; Palanivelu, M.; Kavitha, G.; Prakash, S.; Kumar, R. T.; Jaganathan, S. K.; Baykal, A. J. Magn. 2019, 476 (15), 157–165. https://doi.org/10.1016/j.jmmm.2018.09.089.Suche in Google Scholar

4. Ojha, V. H.; Kant, K. M. Phys. B 2019, 567 (15), 87–94. https://doi.org/10.1016/j.physb.2019.04.035.Suche in Google Scholar

5. Ansari, S. M.; Ghosh, K. C.; Devan, R. S.; Sen, D.; Sastry, P. U.; Kolekar, Y. D.; Ramana, C. V. ACS Omega 2020, 5 (31), 19315–19330. https://doi.org/10.1021/acsomega.9b02492.Suche in Google Scholar PubMed PubMed Central

6. Sharifianjazi, F.; Moradi, M.; Parvin, N.; Nemati, A.; Rad, A. J.; Sheysi, N.; Abouchenari, A.; Mohammadi, A.; Karbasi, S.; Ahmadi, Z.; Esmaeilkhanian, A.; Irani, M.; Pakseresht, A.; Sahmani, S.; Asl, M. S. Ceram. Int. 2020, 46 (11), 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202.Suche in Google Scholar

7. Oh, Y.; Sahu, M.; Hajra, S.; Padhan, A. M.; Panda, S.; Kim, H. J. J. Electron. Mater. 2022, 51, 1933–1939. https://doi.org/10.1007/s11664-022-09551-5.Suche in Google Scholar

8. Lin, Q.; He, Y.; Xu, J.; Lin, J.; Guo, Z.; Yang, F. Nanomaterials 2018, 8 (10), 750. https://doi.org/10.3390/nano8100750.Suche in Google Scholar PubMed PubMed Central

9. Cao, D.; Pan, L.; Li, J.; Cheng, X.; Zhao, Z.; Xu, J.; Li, Q.; Wang, X.; Li, S.; Wang, J.; Liu, Q. Sci. Rep. 2018, 8, 7916. https://doi.org/10.1038/s41598-018-26341-4.Suche in Google Scholar PubMed PubMed Central

10. Nethala, G. P.; Tadi, R.; Gajula, G. R.; Madduri, P. V. P.; Anupama, A. V.; Veeraiah, V. Mater. Chem. Phys. 2019, 238, 121903. https://doi.org/10.1016/j.matchemphys.2019.121903.Suche in Google Scholar

11. Monisha, P.; Priyadharshini, P.; Gomathi, S. S.; Pushpanathan, K. J. Alloys Compd. 2021, 856, 157447. https://doi.org/10.1016/j.jallcom.2020.157447.Suche in Google Scholar

12. Mariosi, F. R.; Venturini, J.; Viegas, A. C.; Bergmann, C. P. Ceram. Int. 2020, 46 (3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266.Suche in Google Scholar

13. Anantharamaiah, P. N.; Joy, P. A. Phys. B 2019, 554, 107–113. https://doi.org/10.1016/j.physb.2018.11.031.Suche in Google Scholar

14. Heiba, Z. K.; Mohamed, M. B.; Wahba, A. M.; Almalowi, M. I. Appl. Phys. A 2018, 124, 290. https://doi.org/10.1007/s00339-018-1721-3.Suche in Google Scholar

15. Anantharamaiah, P. N.; Joy, P. A. J. Phys. D: Appl. Phys. 2017, 50 (43), 435005. https://doi.org/10.1088/1361-6463/aa8af6.Suche in Google Scholar

16. Yang, H.; Liu, M.; Lin, Y.; Yang, Y. J. Alloys Compd. 2015, 631, 335–339. https://doi.org/10.1016/j.jallcom.2015.01.012.Suche in Google Scholar

17. Divya, S.; Sivaprakash, P.; Raja, S.; Muthu, S. E.; Kim, I.; Renuka, N.; Arumugam, S.; Oh, T. H. Ceram. Int. 2022, 48 (22), 33208–33218. https://doi.org/10.1016/j.ceramint.2022.07.263.Suche in Google Scholar

18. Niu, P.; Li, C.; Wang, D.; Jia, C.; Zhao, J.; Liu, Z.; Zhang, X.; Geng, L. Appl. Surf. Sci. 2022, 605, 154732. https://doi.org/10.1016/j.apsusc.2022.154732.Suche in Google Scholar

19. Zhou, C.; Zhang, A.; Chang, T.; Chen, Y.; Zhang, Y.; Tian, F.; Zuo, W.; Ren, Y.; Song, X.; Yang, S. Materials 2019, 12 (10), 1685. https://doi.org/10.3390/ma12101685.Suche in Google Scholar PubMed PubMed Central

20. Pandit, R.; Sharma, K. K.; Kaur, P.; Kotnala, R. K.; Shah, J.; Kumar, R. J. Phys. Chem. Solids 2014, 75 (4), 558–569. https://doi.org/10.1016/j.jpcs.2013.12.015.Suche in Google Scholar

21. Abbas, N.; Rubab, N.; Sadiq, N.; Manzoor, S.; Khan, M. I.; Garcia, J. F.; Aragao, I. B.; Tariq, M.; Akhtar, Z.; Yasmin, G. Water 2020, 12 (8), 2285. https://doi.org/10.3390/w12082285.Suche in Google Scholar

22. Novosel, N.; Pajic, D.; Raghavender, A. T.; Zadro, K.; Jadhav, K. M. J. Phys.: Conf. Ser. 2010, 200, 072070. https://doi.org/10.1088/1742-6596/200/7/072070.Suche in Google Scholar

23. Boukili, A. E.; Mounkachi, O.; Hamedoun, M.; Lachkar, P.; Hlil, E. K.; Benyoussef, A.; Balli, M.; Ez-Zahraouy, H. J. Alloys Compd. 2021, 859, 158392. https://doi.org/10.1016/j.jallcom.2020.158392.Suche in Google Scholar

24. Jha, R.; Singh, S. K.; Kumar, A.; Awana, V. S. P. J. Magn. Magn. Mater. 2012, 324 (18), 2849–2853. https://doi.org/10.1016/j.jmmm.2012.04.026.Suche in Google Scholar

25. Maatar, S. C.; M’nassri, R.; Koubaa, W. C.; Koubaa, M.; Cheikhrouhou, A. J. Solid State Chem. 2015, 225, 83–88. https://doi.org/10.1016/j.jssc.2014.12.007.Suche in Google Scholar

26. Koubaa, M.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. J. Phys. Chem. Solids 2009, 70 (2), 326–333. https://doi.org/10.1016/j.jpcs.2008.10.028.Suche in Google Scholar

27. Olmos, R.; Delgado, J. A.; Iturriaga, H.; Martinez, L. M.; Saiz, C. L.; Shao, L.; Liu, Y.; Petrovic, C.; Singamaneni, S. R. J. Appl. Phys. 2021, 130 (1), 013902. https://doi.org/10.1063/5.0056387.Suche in Google Scholar

28. Henchiri, C.; Omari, L. H.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. J. Alloys Compd. 2022, 905, 164196. https://doi.org/10.1016/j.jallcom.2022.164196.Suche in Google Scholar

29. Liu, Y.; Koch, R. J.; Hu, Z.; Aryal, N.; Stavitski, E.; Tong, X.; Attenkofer, K.; Bozin, E. S.; Yin, W.; Petrovic, C. Phys. Rev. B 2020, 102, 085158. https://doi.org/10.1103/PhysRevB.102.085158.Suche in Google Scholar

30. Han, L.; Zhai, W.; Bai, B.; Zhu, H.; Yang, J.; Yan, Z.; Zhang, T. Ceram. Int. 2019, 45 (11), 14322–14326. https://doi.org/10.1016/j.ceramint.2019.04.146.Suche in Google Scholar

31. Hcini, S.; Kouki, N.; Omri, A.; Dhahri, A.; Bouazizi, M. L. J. Magn. Magn. Mater. 2018, 464, 91–102. https://doi.org/10.1016/j.jmmm.2018.05.045.Suche in Google Scholar

32. Pan, L.; Wang, Y.; Yin, L.; Zhang, M.; Li, Y.; Townsend, P. D.; Poelman, D. J. Lumin. 2023, 258, 119822. https://doi.org/10.1016/j.jlumin.2023.119822.Suche in Google Scholar

33. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. Sect. B 1969, 25, 925–946. https://doi.org/10.1107/S0567740869003220.Suche in Google Scholar

34. Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X. Nanoscale 2015, 7 (15), 6520–6526. https://doi.org/10.1039/C5NR00582E.Suche in Google Scholar PubMed

35. Henchiri, C.; Hamdi, R.; Mnasri, T.; Valente, M. A.; Prezas, P. R.; Dhahri, E. Appl. Phys. A 2019, 125, 725. https://doi.org/10.1007/s00339-019-2980-3.Suche in Google Scholar

36. Nasri, M.; Triki, M.; Dhahri, E.; Hussein, M.; Lachkar, P.; Hlil, E. K. Phys. B 2013, 408, 104–109. https://doi.org/10.1016/j.physb.2012.09.003.Suche in Google Scholar

37. Henchiri, C.; Benali, A.; Mnasri, T.; Valente, M. A.; Dhahri, E. J. Supercond. Nov. Magnetism 2020, 33, 1143–1149. https://doi.org/10.1007/s10948-019-05316-0.Suche in Google Scholar

38. Oumezzine, E.; Hcini, S.; Baazaoui, M.; Hlil, E. K.; Oumezzine, M. J. Alloys Compd. 2016, 656, 676–684. https://doi.org/10.1016/j.jallcom.2015.09.269.Suche in Google Scholar

39. Arrott, A. Phys. Rev. 1957, 108 (6), 1394. https://doi.org/10.1103/PhysRev.108.1394.Suche in Google Scholar

40. Shin, H. S.; Lee, J. E.; Nam, Y. S.; Ju, H. L.; Park, C. W. Solid State Commun. 2001, 118 (7), 377–380. https://doi.org/10.1016/S0038-1098(01)00123-5.Suche in Google Scholar

41. Henchiri, C.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. Chem. Phys. Lett. 2021, 769, 138422. https://doi.org/10.1016/j.cplett.2021.138422.Suche in Google Scholar

42. Kaul, S. N. J. Magn. Magn. Mater. 1985, 53 (1–2), 5–53. https://doi.org/10.1016/0304-8853(85)90128-3.Suche in Google Scholar

43. Arrott, A.; Noakes, J. E. Phys. Rev. Lett. 1967, 19 (14), 786. https://doi.org/10.1103/PhysRevLett.19.786.Suche in Google Scholar

44. Widom, B. J. Chem. Phys. 1965, 43 (11), 3892–3897. https://doi.org/10.1063/1.1696617.Suche in Google Scholar

45. Phan, M. H.; Morales, M. B.; Bingham, N. S.; Srikanth, H.; Zhang, C. L.; Cheong, S. W. Phys. Rev. B 2010, 81 (9), 094413. https://doi.org/10.1103/PhysRevB.81.094413.Suche in Google Scholar

46. Kouki, N.; Hcini, S.; Boudard, M.; Aldawas, R.; Dhahri, A. RSC Adv. 2019, 9 (4), 1990–2001. https://doi.org/10.1039/C8RA09113G.Suche in Google Scholar

47. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. Phys. Status Solidi B 1987, 144 (1), 411. https://doi.org/10.1002/pssb.2221440136.Suche in Google Scholar

48. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. J. Magn. Magn. Mater. 1987, 69 (2), 163–170. https://doi.org/10.1016/0304-8853(87)90113-2.Suche in Google Scholar

49. Nasri, M.; Henchiri, C.; Dhahri, R.; Khelifi, J.; Dhahri, E.; Mariano, J. F. M. L. Inorg. Chem. Commun. 2021, 133, 108933. https://doi.org/10.1016/j.inoche.2021.108933.Suche in Google Scholar

50. Lin, S.; Lv, H. Y.; Lin, J. C.; Huang, Y. N.; Zhang, L.; Song, W. H.; Tong, P.; Lu, W. J.; Sun, Y. P. Phys. Rev. B 2018, 98 (1), 014412. https://doi.org/10.1103/PhysRevB.98.014412.Suche in Google Scholar

51. Han, H.; Zhang, L.; Sapkota, D.; Hao, N.; Ling, L.; Du, H.; Pi, L.; Zhang, C.; Mandrus, D. G.; Zhang, Y. Phys. Rev. B 2017, 96 (9), 094439. https://doi.org/10.1103/PhysRevB.96.094439.Suche in Google Scholar

52. Ghosh, K.; Lobb, C. J.; Greene, R. L.; Karabashev, S. G.; Shulyatev, D. A.; Arsenov, A. A.; Mukovskii, Y. Phys. Rev. Lett. 1998, 81 (21), 4740. https://doi.org/10.1103/PhysRevLett.81.4740.Suche in Google Scholar

Received: 2023-11-07
Accepted: 2024-05-01
Published Online: 2024-07-25
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0330/html
Button zum nach oben scrollen