Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
-
Zonghao Song
und Ganhong Zheng
Abstract
We have examined the behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) ferrite close to the transition from ferromagnetic to paramagnetic phases (TC). The findings indicate that at a temperature of TC = 314 K (x = 1.0) and TC = 224 K (x = 1.2), there is a second order magnetic phase transition. We used various methods, including modified Arrott plot, Kouvel–Fisher method, and critical isotherm analysis, to determine the critical exponents which were found to be similar to those expected for the Tricritical Mean-field model (β = 0.288, γ = 1.057, and δ = 4.665) for the x = 1.0 sample. The critical exponents for the x = 1.2 sample (β = 0.771, γ = 1.081, and δ = 2.403) belonged to a different universality class. These results suggest that the replacement of Fe ions with non-magnetic Al ions decreases the Co–Fe, Fe–Fe, Co–Co interaction sites in the CoFe2O4 spinel ferrite, increasing magnetic disorder.
-
Research ethics: Not applicable.
-
Author contributions: Zonghao Song: manuscript composition, Ruiyang Cao: experimental design, ChenLiang Ruan: carrying out measurements, Xian Zhang: carrying out measurements, Shouguo Wang: carrying out measurements, Meiling Wang: carrying out measurements, Yongqing Ma: conception, Ganhong Zheng: conception.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Key Research and Development Program of China (No. 2021YFA1600203) and the National Natural Science Foundation of China (Grant no. U19A2093), the Key Projects of Natural Science Research of Higher Education Institutions of Anhui Province (KJ2021A0975), and the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University. Anhui Province University Excellent Talents Support Program (Grant No. gxyq2022069).
-
Data availability: Not applicable.
References
1. Henchiri, C.; Mnasri, T.; Benali, A.; Hamdi, R.; Dhahri, E.; Valente, M. A.; Costa, B. O. F. RSC Adv. 2020, 10 (14), 8352–8363. https://doi.org/10.1039/C9RA10469K.Suche in Google Scholar PubMed PubMed Central
2. Kumar, Y.; Sharma, A.; Shirage, P. M. J. Alloys Compd. 2019, 778 (25), 398–409. https://doi.org/10.1016/j.jallcom.2018.11.128.Suche in Google Scholar
3. Elayakumar, K.; Dinesh, A.; Manikandan, A.; Palanivelu, M.; Kavitha, G.; Prakash, S.; Kumar, R. T.; Jaganathan, S. K.; Baykal, A. J. Magn. 2019, 476 (15), 157–165. https://doi.org/10.1016/j.jmmm.2018.09.089.Suche in Google Scholar
4. Ojha, V. H.; Kant, K. M. Phys. B 2019, 567 (15), 87–94. https://doi.org/10.1016/j.physb.2019.04.035.Suche in Google Scholar
5. Ansari, S. M.; Ghosh, K. C.; Devan, R. S.; Sen, D.; Sastry, P. U.; Kolekar, Y. D.; Ramana, C. V. ACS Omega 2020, 5 (31), 19315–19330. https://doi.org/10.1021/acsomega.9b02492.Suche in Google Scholar PubMed PubMed Central
6. Sharifianjazi, F.; Moradi, M.; Parvin, N.; Nemati, A.; Rad, A. J.; Sheysi, N.; Abouchenari, A.; Mohammadi, A.; Karbasi, S.; Ahmadi, Z.; Esmaeilkhanian, A.; Irani, M.; Pakseresht, A.; Sahmani, S.; Asl, M. S. Ceram. Int. 2020, 46 (11), 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202.Suche in Google Scholar
7. Oh, Y.; Sahu, M.; Hajra, S.; Padhan, A. M.; Panda, S.; Kim, H. J. J. Electron. Mater. 2022, 51, 1933–1939. https://doi.org/10.1007/s11664-022-09551-5.Suche in Google Scholar
8. Lin, Q.; He, Y.; Xu, J.; Lin, J.; Guo, Z.; Yang, F. Nanomaterials 2018, 8 (10), 750. https://doi.org/10.3390/nano8100750.Suche in Google Scholar PubMed PubMed Central
9. Cao, D.; Pan, L.; Li, J.; Cheng, X.; Zhao, Z.; Xu, J.; Li, Q.; Wang, X.; Li, S.; Wang, J.; Liu, Q. Sci. Rep. 2018, 8, 7916. https://doi.org/10.1038/s41598-018-26341-4.Suche in Google Scholar PubMed PubMed Central
10. Nethala, G. P.; Tadi, R.; Gajula, G. R.; Madduri, P. V. P.; Anupama, A. V.; Veeraiah, V. Mater. Chem. Phys. 2019, 238, 121903. https://doi.org/10.1016/j.matchemphys.2019.121903.Suche in Google Scholar
11. Monisha, P.; Priyadharshini, P.; Gomathi, S. S.; Pushpanathan, K. J. Alloys Compd. 2021, 856, 157447. https://doi.org/10.1016/j.jallcom.2020.157447.Suche in Google Scholar
12. Mariosi, F. R.; Venturini, J.; Viegas, A. C.; Bergmann, C. P. Ceram. Int. 2020, 46 (3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266.Suche in Google Scholar
13. Anantharamaiah, P. N.; Joy, P. A. Phys. B 2019, 554, 107–113. https://doi.org/10.1016/j.physb.2018.11.031.Suche in Google Scholar
14. Heiba, Z. K.; Mohamed, M. B.; Wahba, A. M.; Almalowi, M. I. Appl. Phys. A 2018, 124, 290. https://doi.org/10.1007/s00339-018-1721-3.Suche in Google Scholar
15. Anantharamaiah, P. N.; Joy, P. A. J. Phys. D: Appl. Phys. 2017, 50 (43), 435005. https://doi.org/10.1088/1361-6463/aa8af6.Suche in Google Scholar
16. Yang, H.; Liu, M.; Lin, Y.; Yang, Y. J. Alloys Compd. 2015, 631, 335–339. https://doi.org/10.1016/j.jallcom.2015.01.012.Suche in Google Scholar
17. Divya, S.; Sivaprakash, P.; Raja, S.; Muthu, S. E.; Kim, I.; Renuka, N.; Arumugam, S.; Oh, T. H. Ceram. Int. 2022, 48 (22), 33208–33218. https://doi.org/10.1016/j.ceramint.2022.07.263.Suche in Google Scholar
18. Niu, P.; Li, C.; Wang, D.; Jia, C.; Zhao, J.; Liu, Z.; Zhang, X.; Geng, L. Appl. Surf. Sci. 2022, 605, 154732. https://doi.org/10.1016/j.apsusc.2022.154732.Suche in Google Scholar
19. Zhou, C.; Zhang, A.; Chang, T.; Chen, Y.; Zhang, Y.; Tian, F.; Zuo, W.; Ren, Y.; Song, X.; Yang, S. Materials 2019, 12 (10), 1685. https://doi.org/10.3390/ma12101685.Suche in Google Scholar PubMed PubMed Central
20. Pandit, R.; Sharma, K. K.; Kaur, P.; Kotnala, R. K.; Shah, J.; Kumar, R. J. Phys. Chem. Solids 2014, 75 (4), 558–569. https://doi.org/10.1016/j.jpcs.2013.12.015.Suche in Google Scholar
21. Abbas, N.; Rubab, N.; Sadiq, N.; Manzoor, S.; Khan, M. I.; Garcia, J. F.; Aragao, I. B.; Tariq, M.; Akhtar, Z.; Yasmin, G. Water 2020, 12 (8), 2285. https://doi.org/10.3390/w12082285.Suche in Google Scholar
22. Novosel, N.; Pajic, D.; Raghavender, A. T.; Zadro, K.; Jadhav, K. M. J. Phys.: Conf. Ser. 2010, 200, 072070. https://doi.org/10.1088/1742-6596/200/7/072070.Suche in Google Scholar
23. Boukili, A. E.; Mounkachi, O.; Hamedoun, M.; Lachkar, P.; Hlil, E. K.; Benyoussef, A.; Balli, M.; Ez-Zahraouy, H. J. Alloys Compd. 2021, 859, 158392. https://doi.org/10.1016/j.jallcom.2020.158392.Suche in Google Scholar
24. Jha, R.; Singh, S. K.; Kumar, A.; Awana, V. S. P. J. Magn. Magn. Mater. 2012, 324 (18), 2849–2853. https://doi.org/10.1016/j.jmmm.2012.04.026.Suche in Google Scholar
25. Maatar, S. C.; M’nassri, R.; Koubaa, W. C.; Koubaa, M.; Cheikhrouhou, A. J. Solid State Chem. 2015, 225, 83–88. https://doi.org/10.1016/j.jssc.2014.12.007.Suche in Google Scholar
26. Koubaa, M.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. J. Phys. Chem. Solids 2009, 70 (2), 326–333. https://doi.org/10.1016/j.jpcs.2008.10.028.Suche in Google Scholar
27. Olmos, R.; Delgado, J. A.; Iturriaga, H.; Martinez, L. M.; Saiz, C. L.; Shao, L.; Liu, Y.; Petrovic, C.; Singamaneni, S. R. J. Appl. Phys. 2021, 130 (1), 013902. https://doi.org/10.1063/5.0056387.Suche in Google Scholar
28. Henchiri, C.; Omari, L. H.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. J. Alloys Compd. 2022, 905, 164196. https://doi.org/10.1016/j.jallcom.2022.164196.Suche in Google Scholar
29. Liu, Y.; Koch, R. J.; Hu, Z.; Aryal, N.; Stavitski, E.; Tong, X.; Attenkofer, K.; Bozin, E. S.; Yin, W.; Petrovic, C. Phys. Rev. B 2020, 102, 085158. https://doi.org/10.1103/PhysRevB.102.085158.Suche in Google Scholar
30. Han, L.; Zhai, W.; Bai, B.; Zhu, H.; Yang, J.; Yan, Z.; Zhang, T. Ceram. Int. 2019, 45 (11), 14322–14326. https://doi.org/10.1016/j.ceramint.2019.04.146.Suche in Google Scholar
31. Hcini, S.; Kouki, N.; Omri, A.; Dhahri, A.; Bouazizi, M. L. J. Magn. Magn. Mater. 2018, 464, 91–102. https://doi.org/10.1016/j.jmmm.2018.05.045.Suche in Google Scholar
32. Pan, L.; Wang, Y.; Yin, L.; Zhang, M.; Li, Y.; Townsend, P. D.; Poelman, D. J. Lumin. 2023, 258, 119822. https://doi.org/10.1016/j.jlumin.2023.119822.Suche in Google Scholar
33. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. Sect. B 1969, 25, 925–946. https://doi.org/10.1107/S0567740869003220.Suche in Google Scholar
34. Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X. Nanoscale 2015, 7 (15), 6520–6526. https://doi.org/10.1039/C5NR00582E.Suche in Google Scholar PubMed
35. Henchiri, C.; Hamdi, R.; Mnasri, T.; Valente, M. A.; Prezas, P. R.; Dhahri, E. Appl. Phys. A 2019, 125, 725. https://doi.org/10.1007/s00339-019-2980-3.Suche in Google Scholar
36. Nasri, M.; Triki, M.; Dhahri, E.; Hussein, M.; Lachkar, P.; Hlil, E. K. Phys. B 2013, 408, 104–109. https://doi.org/10.1016/j.physb.2012.09.003.Suche in Google Scholar
37. Henchiri, C.; Benali, A.; Mnasri, T.; Valente, M. A.; Dhahri, E. J. Supercond. Nov. Magnetism 2020, 33, 1143–1149. https://doi.org/10.1007/s10948-019-05316-0.Suche in Google Scholar
38. Oumezzine, E.; Hcini, S.; Baazaoui, M.; Hlil, E. K.; Oumezzine, M. J. Alloys Compd. 2016, 656, 676–684. https://doi.org/10.1016/j.jallcom.2015.09.269.Suche in Google Scholar
39. Arrott, A. Phys. Rev. 1957, 108 (6), 1394. https://doi.org/10.1103/PhysRev.108.1394.Suche in Google Scholar
40. Shin, H. S.; Lee, J. E.; Nam, Y. S.; Ju, H. L.; Park, C. W. Solid State Commun. 2001, 118 (7), 377–380. https://doi.org/10.1016/S0038-1098(01)00123-5.Suche in Google Scholar
41. Henchiri, C.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. Chem. Phys. Lett. 2021, 769, 138422. https://doi.org/10.1016/j.cplett.2021.138422.Suche in Google Scholar
42. Kaul, S. N. J. Magn. Magn. Mater. 1985, 53 (1–2), 5–53. https://doi.org/10.1016/0304-8853(85)90128-3.Suche in Google Scholar
43. Arrott, A.; Noakes, J. E. Phys. Rev. Lett. 1967, 19 (14), 786. https://doi.org/10.1103/PhysRevLett.19.786.Suche in Google Scholar
44. Widom, B. J. Chem. Phys. 1965, 43 (11), 3892–3897. https://doi.org/10.1063/1.1696617.Suche in Google Scholar
45. Phan, M. H.; Morales, M. B.; Bingham, N. S.; Srikanth, H.; Zhang, C. L.; Cheong, S. W. Phys. Rev. B 2010, 81 (9), 094413. https://doi.org/10.1103/PhysRevB.81.094413.Suche in Google Scholar
46. Kouki, N.; Hcini, S.; Boudard, M.; Aldawas, R.; Dhahri, A. RSC Adv. 2019, 9 (4), 1990–2001. https://doi.org/10.1039/C8RA09113G.Suche in Google Scholar
47. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. Phys. Status Solidi B 1987, 144 (1), 411. https://doi.org/10.1002/pssb.2221440136.Suche in Google Scholar
48. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. J. Magn. Magn. Mater. 1987, 69 (2), 163–170. https://doi.org/10.1016/0304-8853(87)90113-2.Suche in Google Scholar
49. Nasri, M.; Henchiri, C.; Dhahri, R.; Khelifi, J.; Dhahri, E.; Mariano, J. F. M. L. Inorg. Chem. Commun. 2021, 133, 108933. https://doi.org/10.1016/j.inoche.2021.108933.Suche in Google Scholar
50. Lin, S.; Lv, H. Y.; Lin, J. C.; Huang, Y. N.; Zhang, L.; Song, W. H.; Tong, P.; Lu, W. J.; Sun, Y. P. Phys. Rev. B 2018, 98 (1), 014412. https://doi.org/10.1103/PhysRevB.98.014412.Suche in Google Scholar
51. Han, H.; Zhang, L.; Sapkota, D.; Hao, N.; Ling, L.; Du, H.; Pi, L.; Zhang, C.; Mandrus, D. G.; Zhang, Y. Phys. Rev. B 2017, 96 (9), 094439. https://doi.org/10.1103/PhysRevB.96.094439.Suche in Google Scholar
52. Ghosh, K.; Lobb, C. J.; Greene, R. L.; Karabashev, S. G.; Shulyatev, D. A.; Arsenov, A. A.; Mukovskii, Y. Phys. Rev. Lett. 1998, 81 (21), 4740. https://doi.org/10.1103/PhysRevLett.81.4740.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde