Abstract
Site preference, structural stability and mechanical properties of Mg2Si doped by ternary elements were studied by first-principles calculation. Formation enthalpies show that light element impurity Al and rare earth elements Sc and Y tend to occupy the Mg site, while transition element Cu has a preference for the Si site. Shear modulus to bulk modulus ratio (G/B), Poisson’s ratio ν and Cauchy pressure show that the ductility of Mg2Si is improved for ternary element addition. The introduced parameter of ductility factor D indicates that the enhanced dislocation emission but suppressed micro-crack propagation is the key to enhancing ductility. Electronic structure indicates the brittleness is due to the strong covalent interaction between Mg-2p and Si-3p (Mg-3s and Si-3p/3s). While, with the incorporation of alloying elements, abundant electrons are injected into the matrix Mg2Si. Thereby, the covalent interaction is effectively suppressed and the ductility is improved.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no competing interests.
-
Research funding: Financial support from Colleges and universities in Jiangsu Province Natural Science Research Projects (NO. 20KJB140002).
-
Data availability: Not applicable.
References
1. Moharami, A.; Razaghian, A.; Babaei, B.; Ojo, O.; Šlapáková, M. J. Compos. Mater. 2020, 54, 4035–4057. https://doi.org/10.1177/0021998320925528.Search in Google Scholar
2. Gordin, A.; Sandhage, K. Intermetallics 2018, 94, 200–209. https://doi.org/10.1016/j.intermet.2018.01.003.Search in Google Scholar
3. Balout, H.; Boulet, P.; Record, M. Intermetallics 2014, 50, 8–13. https://doi.org/10.1016/j.intermet.2014.02.002.Search in Google Scholar
4. Seth, P.; Parkash, O.; Kumar, D. RSC Adv. 2020, 61, 37327–37345. https://doi.org/10.1039/D0RA02744H.10.1039/D0RA02744HSearch in Google Scholar PubMed PubMed Central
5. Prasada, S.; Prasada, S.; Verma, K.; Mishra, R.; Kumar, V.; Singh, S. J. Magnesium Alloys 2022, 1, 1–61. https://doi.org/10.1016/j.jma.2021.05.012.Search in Google Scholar
6. Zhao, K.; Yang, Y.; Zhang, L.; Zhang, J.; Zhou, Y.; Huang, H.; Luo, S.; Luo, L. Environ. Res. 2022, 205, 112244. https://doi.org/10.1016/j.envres.2021.112244.Search in Google Scholar PubMed
7. Li, A.; Zhao, X.; Huang, H.; Ma, Y.; Gao, L.; Su, Y.; Qian, P.. Int. J. Miner., Metall. Mater. 2019, 26, 507–519. https://doi.org/10.1007/s12613-019-1758-0.Search in Google Scholar
8. Morozova, N.; Ovsyannikov, S.; Korobeinikov, I.; Karkin, A.; Takarabe, K.; Mori, Y.; Nakamura, S.; Shchennikov, V. J. Appl. Phys. 2014, 115, 213705. https://doi.org/10.1063/1.4881015.Search in Google Scholar
9. Tani, J.; Kido, H. Intermetallics 2007, 15, 1202. https://doi.org/10.1016/j.intermet.2007.02.009.Search in Google Scholar
10. Han, X.; Shao, G. J. Appl. Phys. 2012, 112, 013715. https://doi.org/10.1063/1.4733996.Search in Google Scholar
11. Muthiah, S.; Pulikkotil, J.; Srivastava, A.; Kumar, A.; Pathak, B.; Dhar, A.; Budhani, R. Appl. Phys. Lett. 2013, 103, 053901. https://doi.org/10.1063/1.4816802.Search in Google Scholar
12. Wang, W.; Ren, Y.; Li, Y. J. Electron. Mater. 2019, 48, 1582–1589. https://doi.org/10.1007/s11664-018-06864-2.Search in Google Scholar
13. Rice, J. J. Mech. Phys. Solids 1992, 40, 239–271. https://doi.org/10.1016/S0022-5096(05)80012-2.Search in Google Scholar
14. Kohn, W.; Sham, L. Phys. Rev. 1965, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133.Search in Google Scholar
15. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115. https://doi.org/10.1103/PhysRevB.48.13115.Search in Google Scholar
16. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169.Search in Google Scholar
17. Pack, J.; Monkhors, H. Phys. Rev. B 1997, 16, 1748. https://doi.org/10.1103/PhysRevB.16.1748.Search in Google Scholar
18. Perdew, J.; Burke, K.; Ernzerh, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865.Search in Google Scholar PubMed
19. Fagan, S.; Mota, R.; Baierle, R.; Paiva, G.; Silva, A.; Fazzio, A. J. Mol. Struct. 2011, 539, 101. https://doi.org/10.1016/S0166-1280(00)00777-6.Search in Google Scholar
20. Nylén, J.; Garcıà, F.; Mosel, B.; Pöttgen, R.; Häussermann, U. Solid State Sci. 2004, 6, 147. https://doi.org/10.1016/j.solidstatesciences.2003.09.011.Search in Google Scholar
21. Monkhorst, H.; Pack, J. Phys. Rev. B 1976, 13, 5188. https://doi.org/10.1103/PhysRevB.13.5188.Search in Google Scholar
22. Villars, P.; Calvert, L. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed.; ASM International, 1991.Search in Google Scholar
23. Huang, Z.; Zhao, Y.; Hou, H.; Han, P. Phys. B 2012, 407, 1075–1081. https://doi.org/10.1016/j.physb.2011.12.132.Search in Google Scholar
24. Yu, B.; Chen, D.; Tang, Q.; Wang, C.; Shi, D. J. Phys. Chem. Solids 2010, 71, 758. https://doi.org/10.1016/j.jpcs.2010.01.017.Search in Google Scholar
25. Madelung, O. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 17e; Springer-Verlag: Berlin, 1983; p 163. 432.Search in Google Scholar
26. Nye, J. Physical Properties of Crystal; Oxford Clarendon: Oxford, 1964.Search in Google Scholar
27. Voigt, W. Lehrbuch der Kristallphysik; Taubner: Leipzig, 1928.Search in Google Scholar
28. Reuss, A. Z. Angew. Math. Mech. 1929, 9, 55. https://doi.org/10.1002/abio.370040210.Search in Google Scholar
29. Hill, R. Proc. Phys. Soc. A 1952, 65, 349–354. https://doi.org/10.1088/0370-1298/65/5/307.Search in Google Scholar
30. Pugh, S. Philos. Mag. Arch. 1954, 45, 823. https://doi.org/10.1080/14786440808520496.Search in Google Scholar
31. Pettifor, D. Mater. Sci. Technol. 1992, 8, 345–349. https://doi.org/10.1179/mst.1992.8.4.345.Search in Google Scholar
32. Rice, J.; Thomson, R. Philos. Mag. 1974, 29, 73–97. https://doi.org/10.1080/14786437408213555.Search in Google Scholar
33. Rose, J.; Smith, J.; Ferrante, J. Phys. Rev. B 1983, 28, 1835. https://doi.org/10.1103/PhysRevB.28.1835.Search in Google Scholar
34. Vazquez, F.; Fqrman, R.; Carssnals, M. Phys. Rev. Lett. 1968, 176, 905–908. https://doi.org/10.1103/PhysRev.176.905.Search in Google Scholar
35. Jang, J.; Lee, J.; Kim, B.; Park, S.; Lee, H. RSC Adv. 2017, 7, 21671–21677. https://doi.org/10.1039/C7RA00541E.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde