In this paper, some properties of prime elements, pseudoprime elements, irreducible elements and coatoms in posets are investigated. We show that the four kinds of elements are equivalent to each other in finite Boolean posets. Furthermore, we demonstrate that every element of a finite Boolean poset can be represented by one kind of them. The example presented in this paper indicates that this result may not hold in every finite poset, but all the irreducible elements are proved to be contained in each order generating set. Finally, the multiplicative auxiliary relation on posets and the notion of arithmetic poset are introduced, and some properties about them are generalized to posets.
Inhalt
-
29. Dezember 2013
-
29. Dezember 2013
-
Open AccessAnkeny-Artin-Chowla type congruences modulo p 329. Dezember 2013
-
29. Dezember 2013
-
29. Dezember 2013
-
Open AccessEntire functions sharing sets of small functions with their difference operators or shifts29. Dezember 2013
-
Open Accessq-subharmonicity and q-convex domains in ℂn29. Dezember 2013
-
29. Dezember 2013
-
29. Dezember 2013
-
Open AccessThe Dirichlet problem for elliptic equations in weighted Sobolev spaces on unbounded domains of the plane29. Dezember 2013
-
Open AccessOn equiconvergence of number series29. Dezember 2013
-
Open AccessHenstock-Kurzweil-Pettis integral and weak topologies in nonlinear integral equations on time scales29. Dezember 2013
-
Open AccessA note on trans-Sasakian manifolds29. Dezember 2013
-
Open AccessA note on λ-compact spaces29. Dezember 2013
-
29. Dezember 2013
-
29. Dezember 2013
-
29. Dezember 2013