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ABSTRACT. In this paper, some properties of prime elements, pseudoprime
elements, irreducible elements and coatoms in posets are investigated. We show
that the four kinds of elements are equivalent to each other in finite Boolean
posets. Furthermore, we demonstrate that every element of a finite Boolean poset
can be represented by one kind of them. The example presented in this paper
indicates that this result may not hold in every finite poset, but all the irreducible
elements are proved to be contained in each order generating set. Finally, the
multiplicative auxiliary relation on posets and the notion of arithmetic poset are
introduced, and some properties about them are generalized to posets.
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1. Introduction

Prime elements, irreducible elements and coatoms are the basis of representa-
tion theory, which play an important role in order structure. It was shown in [4]
that every element of a Boolean algebra can be represented by atoms. In order to
better investigate the properties of partial order structures, Hofmann and Law-
son [13] study the prime elements and irreducible elements in semilattice with
continuous property. They show that every element of a continuous semilattice
can be written as an infimum of some irreducible elements. Subsequently, Hof-
mann and Lawson established spectral theory by means of endowing the set that
consists of all the prime elements of a lattice with a topology. They expected to
find the algebraic properties from the viewpoint of topology. Until now, a great
deal of ingenious results about spectral theory have sprung up, which can be
seen in [9]. Therefore, the relations among prime elements, irreducible elements
and coatoms become a problem deserving study. The corrections among them
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will contribute to exploring the properties of the order structure in topology
and representation theory terms flexibly. In [9], the links about these elements
are discussed in detail, and it was shown that prime elements, irreducible ele-
ments and coatoms are the same in Boolean lattices. Further, the pseudoprime
elements, which is more general than prime elements, conincide with prime el-
ements in arithmetic semilattices. Recently, in order to investigate the general
representation theory for posets, Hofmann and Lawson have extended the def-
initions of the prime and irreducible element to posets. With the introduction
of distributivity in posets by Larmerovd and Rachtnek [15], Boolean posets
were well defined by Chajda [2]. So whether the four kinds of elements agree
in Boolean posets, and under what conditions properties in semilattices can be
generalized to posets are natural questions.

This paper mainly investigates the properties of these elements, as well as
the connections among them. In this paper, the relevant results in semilattices
presented in [9] are generalized to posets. We show that prime, pseudoprime,
irreducible elements and coatoms are equivalent to each other in finite Boolean
posets. Based on this assertion, every element of a finite Boolean poset can
be represented by atoms, which is an improvement result compared with that
proposed in [4]. Finally, we introduce the multiplicative auxiliary relation on
posets and the notion of arithmetic posets and further we show that the way-
below relation on a poset is multiplicative iff the poset is arithmetic. Thus
pseudoprime elements agree with prime elements in arithmetic posets, which is
a mild generalization of the relevant result in semilattice given in [9].

The remainder of this paper is arranged as follows. In Section 2, we recall the
necessary definitions and notations. Section 3 mainly discusses the conditions
under which the coatoms agree with the prime elements. The conditions allowing
for the equivalence between coatoms and irreducible elements are investigated in
Section 4. Section 5 elaborates the relation among prime elements, irreducible
elements and coatoms. In Section 6, we firstly investigate some other properties
of the four kinds of elements, then the notions of the multiplicative auxiliary
relation on posets and arithmetic posets are introduced and the properties of
them are discussed. Finally, conclusion is made in Section 7.

2. Preliminary

Let P be a poset, A C P. The set A = {z € P|a <z forany a € A} is
called the upper cone of A. Dually, A' = {x € P|a >z for all a € A} is called
the lower cone of A. A* means {A"}! and A" means {A'}*. The lower set {a}!
is simply denoted by a' and {a, b}! is denoted by (a, b)!. Furthermore, { AU B}
is denoted by {A, B}* for A,B C P. And for z € P, the set {A U {.’L‘}}u is
denoted by {4, z}". Similar notations are used for the dual situations. Note
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that, A C A" and A C A™. In particular, {a*}' = {a}! and A" = Al
At = Av If A C B, then B* C A* and B' C A'. For any subset A C P with
N\ A exists, A" = | \ A. Dually, for any subset A C P with \/ A exists, we have
A* = 1T\ A, where \/ A and A A denote the least upper bound and greatest
lower bound of A, respectively.

DEFINITION 2.1. ([9]) Let P be a poset. A nonempty subset D of P is called a
directed set, provided every finite subset of D has an upper bound in D. Dually,
a nonempty subset I’ of P is called filtered if every finite subset of F' has a lower
bound in F.

DEFINITION 2.2. ([I]) Let P be a poset. X C P. Then X is called a lower set,
if X =X, where | X ={y € P|y <z forsome z € X}. The upper set is
defined dually.

DEFINITION 2.3. ([9]) A subset I of a poset P is called an ideal if it is a directed
lower set. And it is said to be proper, if I # P. A maximal ideal of P is a proper
ideal I such that I C J C P implies J = P for the ideal J. Dually, a subset
X C P is called a filter if it is a filtered upper set. Further, if an ideal I of P
satisfies that P\I is a filter or is empty, then I is called a prime ideal .

Notice that the ideal defined above is different from the Frink ideal [§].

DEFINITION 2.4. ([I5]) A poset P is said to be distributive, if for all a,b,c € P,
{(a,b)",c} = {(a,c)!, (b,c)'}* holds.

Larmerovd and Rachunek [I5] have proved that every distributive poset is
dually distributive. That is for all a,b,c € P, {(a,b)*,c}' = {(a,c)!, (b,c)'}*
holds iff {(a, b)!, c}* = {(a, c)*, (b,c)"}'* holds. Larmerové [I6] characterized the
semilattice with distributive properties defined above. Based on these results,
Rachtunek [19] investigated the larger classes of semilattices.

DEFINITION 2.5. ([2]) An element y € P is called a complement of x € P,
if (x,9)" = (z,y)'"* = P. P is said to be complemented if each element of
it has a complement in P; and P is said to be uniquely complemented if each
element x € P has a unique complement, denoted by z’ in P. A distributive
complemented poset is called a Boolean poset.

Note that each element has at most one complement element in a distributive
poset, so Boolean posets must be uniquely complemented. A Boolean poset may
have no bottom and top element, but once it has one of them, it must have the
other [18].

DEFINITION 2.6. ([II]) An element z* € P is called the pseudocomplement of
x € P,if (v,2*)! = P and for y € P, (z,y)! = P implies y < z*.

Obviously, if the pseudocomplement exists, then it is unique.
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DEFINITION 2.7. ([9]) An element x € P is said to be irreducible if x is maximal
or Tz\{z} is a filter. Dually, we have the definition of co-irreducible. The
sets of all irreducible and co-irreducible elements are denoted by IRR(P) and
COIRR(P), respectively. An element z € P is called completely irreducible if
either z is maximal but different from the top element or tz\{z} has a least
element, denoted by x™.

DEFINITION 2.8. ([9]) An element = € P is said to be prime if x = 1 or P\|x is
a filter. Dually, we have the definition of co-prime element. The sets of all prime
and co-prime elements are denoted by PRI(P) and COPRI(P), respectively. An
element © € P is said to be completely prime if P\lx has a least element,
denoted by zy. An element z € P is said to be completely co-prime if P\Tx has
a greatest element, denoted by = _.

DEFINITION 2.9. ([2]) Let P be a poset. An element a of P is called an atom
whenever:

(1) If P has the least element 0 and 0 < x < a for some z € P, then x = a;

(2) If P has not the least element, then a is a minimal element of P.
Dually, we have the definition of coatom, denoted by A(P) and COA(P), respec-
tively.
THEOREM 2.1. ([2]) Let P be a Boolean poset. Then for each a,b € P, a <b
implies b < a’.

In this paper, we specialize our discussion to bounded posets. Furthermore,

the results also can be generalized to the unbounded posets.

3. Relations between coatoms and prime elements

Generally, a coatom may not be prime, even in a lattice. See the lattice M3
depicted in Figure 1, where the central element v is a coatom but not a prime
element. However, a coatom coincides with a prime element in a Boolean lattice
(see [9]). In this section, we extend this property to finite Boolean posets.

PROPOSITION 3.1. In a distributive poset P, every coatom is prime.

Proof. Let = be a coatom. Then z # 1. To verify P\lz is a filter, it is
sufficient to show that for all a,b € P\|lx and a # 1, b # 1, P\|{z\(a,b)! # 0.
Suppose P\lz ((a,b)! = 0, then for all y € (a,b)!, we have y < z. It follows that
{(a,b)!,z}* = z*. Since a € P\ Jz,b € P\ |z and 7 is a coatom, we conclude
that a 2 2, a £ v and b # x, b £ x. Hence, (a,z)"* = {1} and (b,z)" = {1}.
Then {(a,z)", (b,x)*}!* = {1}. Therefore, z ¢ {(a,z)%, (b,z)"*}!*, but v € 2% =
{(a,b)!,2}*. A contradiction to that P is a distributive poset, which satisfies
{(a,b)!, 2} = {(a,2)", (b, x)*}*. Hence, P\ |z is a filter. This proves that = is
prime. ]
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However, the converse of the above proposition does not hold, even for the
distributive lattices. Moreover, a completely prime element may also not be
a coatom. See the distributive lattice depicted in Figure 2, in which z is a
completely prime element, since ¢ is the least element of P\lx, but clearly
it is not a coatom. Nevertheless, if we consider a Boolean poset, then every
completely prime element is a coatom.

PRrROPOSITION 3.2. FEwery completely prime element of a Boolean poset P is a
coatom.

Proof. Suppose * < y < 1. We need to prove y = 1. Since 2% = (x,y)"
={(z,9)", (v, )}", then 2’ = 2! = (x,9)"" = {(z,y)", (v, y)'}*'. By distribu-
tivity, 2! = {(x,9)*, y}. For all a € (z,9')", we have a > z and a > ¢'. In
fact, there exists a € (x,y’)" such that a = z. Suppose not, that is a > z for
all a € (x,y')", then a £ z. It follows that (z,y")* C P\ lz. Since y > z, then
y € P\ Jz. Hence, {(:v, Y)Y, y} C P\ |z. By the hypothesis, z is a completely

prime element, then P\ |z has a least element z. So z € {(I,y’)“,y}l =zt
which means that z < . A contradiction to z € P\ Jx. Consequently, there
is an element a € (x,y)" such that @ = x and a > y’. Then = > y'. By
Theorem 1.1, y > 2. Soy € (2/,z)" = {1}. O

ProPOSITION 3.3. Fach prime element of a Boolean poset with no infinite
chains is a coatom.

COROLLARY 3.3.1. Every prime element of a finite Boolean poset is a coatom.
Combining Propositions 3.1 and 3.3, we obtain the following theorem.

THEOREM 3.4. In a Boolean poset with no infinite chains, an element is prime
iff it is a coatom.

COROLLARY 3.4.1. In a finite Boolean poset, an element is prime if and only
if it is a coatom.
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4. Relations between coatoms and irreducible elements

Irreducible elements coincide with coatoms in Boolean lattices (see [9]). Con-
sequently, the related questions for Boolean posets are considered in this section.

Let A be a subset of a poset P. In Refs. [6l20], if x = A A implies z € A,
then z is called a A-irreducible element, denoted by M (P). The \/-irreducible
element is defined dually. Generally, the A-irreducible element is different from
the irreducible element. It can be demonstrated from Figure 3, in which the
element a is /\-irreducible, but not irreducible. However, it is easy to check that
in a finite semilattice, x is irreducible iff x is A-irreducible. And A-irreducible
is also different from the completely irreducible, but in terms of the complete
semilattice, they are the same.

LEMMA 4.1. In a poset, \ A exists iff \ A" exists. Once one exists, then
NAY =N\ A.

Proof. Suppose A\ 4 exists, then A™ = (A A)'* =+ A A. Hence, \ A™ exists
and A\ A" = A\ A. Conversely, if A\ A exists, then (A!*)! = {/\(Al“)}l. Since
Al = Al then {/\(Al“)}l = Al. Tt is obvious that \(A™) is a lower bound

of A. Since z € {/\(Al“)}l for all z € A', then = < A\(A'), which means that
A(A™) is the greatest lower bound of A. Therefore, A A = \(A™). O

THEOREM 4.1. In a finite Boolean poset P, x is irreducible iff x is \-irreducible.

Proof. Suppose z is irreducible and x # 1, then tz\{z} is a filter. Suppose
x = N\ A for some A C P. Then for all a € A, we have x < a. In fact, there
exists some a € A such that x = a. Otherwise, if for all a € A, x < a. We can
get that for all a € A, a € tz\{z}. That is A C tz\{z}. Since P is finite and
ta\{z} is a filter, then z = A A € tz\{x}, which is impossible. Hence, there
exists some a € A such that x = a. It follows that z is A-irreducible.
Conversely, if z is A-irreducible and = # 1, we need to prove tz\{z} is a
filter. If tz\{z} is not a filter, then there must exist a,b € Tz\{z} such that
for every ¢ € tz\{z}, a %2 c or b # ¢. Then c is not the lower bound of a
and b. In the following, we prove that z is the greatest lower bound of a and
b. If not, there must exist some m € (a,b)! such that m # x and m £ .
By the property that (m,m/)! = {0}, we obtain {(m,m’)!, 2}* = z*. Further,
by distributivity, {(m,m’)!,z}* = {(m,z)", (m/,z)*}**. Applying Lemma 4.1,
we have z = Aa* = A{(m,2)% (m/,z)*}* = A{(m,x)*, (m/,x)*}. By the
hypothesis, = € {(m,z)*, (m',z)*}. Hence, x € (m,z)*, or x € (m/,z)".
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If z € (m,x)*, then z > m, a contradiction to z 2 m. If z € (m’,z)", then
z>m . Since a > x and b > x, then a > m’ and b > m’, which means that
a,b € (m,m')*. A contradiction to (m,m’)* = {1}. Hence, = is the greatest
lower bound of a and b. That is = a /A b. By the definition of /-irreducible,
we have = a or = b, which is a contradiction to a,b € Tz\{z}. Consequently,
there exists some ¢ € tz\{x}, such that a > ¢ and b > ¢. Then fz\{z} is a
filter. We conclude that x is irreducible. 0

THEOREM 4.2. In a Boolean poset P, M (P) = COA(P).

Proof. Let x € COA(P). Then x # 1. Assume x = A B, B C P. We claim
x € B. If © ¢ B, then for all b € B, we have < b. Since z is a coatom, then
b =1 for all b € B. It follows that x = A B = 1, which is a contradiction to
x # 1. Hence, x € M(P).

For the converse, suppose © € M(P) and z < ¢ < 1. We need to prove ¢ = 1.
By the relation among x, ¢, and ¢/, we have z!* = (z,¢)" = {(z,¢c)!, (¢, c)'}*.
Hence, z! = 2/ = {(z,¢)!, (¢, ¢)'}*. By the distributivity, 2! = {(x, )%, c}.
Then z'* = {(z,c)* c}'*. By Lemma 4.1, 2 = Az = A{(z, )%, c}* =
N{(x, )", c}. Since x € M(P) and = # ¢, we get x € (z,c/)". Hence, x > .
= (z,c)" C (¢, )" ={1}. Then ¢ = 1. O

Remark 1. The A-irreducible element may not be a coatom if the poset is
merely a distributive poset but not a Boolean poset. Just as the element a shown
in Figure 3, where a is /\-irreducible but not a coatom. And even in a distributive
lattice, an irreducible element need not be a coatom. The lattice displayed in
Figure 2 is distributive, and Tz\{z} is a filter. Hence, x is irreducible, but not
a coatom.

The following theorem is a direct consequence of Theorem 4.1 and Theo-
rem 4.2.

THEOREM 4.3. In a finite Boolean poset, x is irreducible if and only if x is a
coatom.

5. Relations between prime and irreducible elements

In a semilattice, an element x is prime iff for all a,b € P, a A b < = implies
a<zorb<x (see [9]). We extend this result to the posets.

PROPOSITION 5.1. Let P be a poset. Then x is prime iff for all a,b € P,
z € (a,b)™™ implies a < z or b < x.

Proof. Suppose z is prime, a,b € P and = € (a,b)!*. If a £ x and b £ =,
then a,b € P\lz. Since P\lz is a filter, there is an element ¢ € P\|x such that
c € (a,b)! and ¢ £ z. It follows that = ¢ (a, b)', which is a contradiction to the
hypothesis. Hence, a < x or b < z.
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For the converse, suppose x # 1, we need to prove that P\|x is a filter. Let
a,b € P\|z. Then by the hypothesis, = ¢ (a,b)!*. Thus, there exists an element
z € (a,b)! such that z & x. That is, there is an element z with z < a and z <b
such that z € P\|z. Therefore, P\|z is a filter. Then z is a prime element. [J

In distributive semilattices, prime elements are exactly irreducible, but it
may not be true in posets. See the distributive poset depicted in Figure 3.
P\la = {b,c,d, 1} is a filter, so a is a prime element. But ta\{a} = {¢,d, 1} is
not a filter, which means that a is not irreducible.

THEOREM 5.2. In a distributive poset P, each completely irreducible element is
prime.

Proof. Suppose x is completely irreducible. By Proposition 5.1, to prove «x is
prime, it is sufficient to show that for all a,b € P, x € (a,b)!* implies x € a“ or
zebt. Ifx ¢ a*and x ¢ b, then for all ¢ € (a,x)*, ¢ > x and for all d € (b, z)",
d > x. Hence, {(a,z)", (b,z)"} C tz\{x}. Since z is completely irreducible,
then to\{x} has a least element x*. Clearly, 2+ € {(a,z)%, (b,z)*}!. By the
distributivity and z € (a,b)™, we have z* = {(a,b)!,2}* = {(a, x)%, (b, z)*}™*.
Since z! = 2% = {(a,b)!, 2} = {(a,z)%, (b, )"} = {(a,2)%, (b,z)"}!, then
xt € 2!, which is a contradiction to 2+ € tz\{z}. Consequently, z € a* or
x € b*. The proof is complete. O

THEOREM 5.3. In a distributive poset with no infinite chains, each irreducible
element is prime.

COROLLARY 5.3.1. In a finite distributive poset, each irreducible element is
prime.

From Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 3.4.1, we can deduce the
following two theorems.

THEOREM 5.4. In a finite Boolean poset P, COA(P) = M(P) = IRR(P)
— PRI(P).

THEOREM 5.5. In a Boolean poset P with no infinite chains, COA(P) = M (P)
— PRI(P).

6. Other properties and applications

It was proved in [5] that COA(P) was meet dense in finite Boolean lattices.
Motivated by the result in [2I], we obtain the corresponding result in finite
Boolean posets.

DEFINITION 6.1. ([2I]) A poset P is said to be atomistic if for all a,b € P with
a % b, there exists an atom p € P such that p < a and (p,b)! = {0}.
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LEMMA 6.1. ([2I]) Let P be a finite poset. If M(P) = COA(P), then P is
atomistic.

Note that a poset P is atomistic iff for every a € P, a = \/ Ar(a), where
Ar(a) = {z € A(P) | # < a}. Then combining Lemma 6.1 with the duality of
Theorem 4.2, we obtain the following theorem.

THEOREM 6.1. Let P be a finite Boolean poset. Then for all a € P, a =
VAz(a).

Theorem 5.3 and Theorem 6.1 indicate that coatoms, irreducible elements
and prime elements are affluent in finite Boolean posets. Properties of Boolean
posets are discussed in detail in [3,[12L18]. From these papers, we can see that
finite Boolean posets can be classified according to the number of atoms, and
prime elements are used for describing Prime Ideal Theorem. The following
property can be viewed as a particular situation of [I2t Theorem 2], but it can
be shown in a direct way by Theorem 6.1, which is different from the method
used in [I§].

PROPOSITION 6.2. In a finite Boolean poset P, a* = (Ap(a))* for every a € P.

Proof. For every a € P, by Theorem 6.1, a = \/ Az (a), then a* = (\/ Ar(a))"
= (Az(a))". O

FIGURE 4.

Ezxample 1. Let a,b,c,d denote the red ball, yellow ball, green ball, and blue
ball, respectively. Choosing two balls from the four balls yields six schemes
denoted by z,v, z,2’,y’,2’. And there are four schemes denoted by o', V', ¢, d’
for getting three balls from the four balls. This incident can be modeled as
a poset as displayed in Figure 4. Obviously, it is a Boolean poset. Generally
speaking, if we want to find all the irreducible elements and prime elements from
an arbitrary Boolean poset, it seems less visible. Fortunately, by Theorem 5.3
we have proved, the two kinds of elements all coincide with coatoms. There
are four coatoms a’,b’',c’,d’ in this Boolean poset, which are exactly all the
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irreducible elements and prime elements. Moreover, according to Theorem 6.1,
every element of this poset can be represented by some atoms. In fact, x = a Vb,
y=aVec, z=aVd, 2 =bVe,y =bVd, 2’ =dVe,d =aVbVe, d =aVbVd,
b =aVeVd, and a = bVecVd As a result, this poset can be regarded as
a poset generated (in the sense of V) by a,b,c,d. Dually, the set {a’,V/,c/,d'}
is order-generating. Further, denote this poset by P, then P = A (P). Here,

DEFINITION 6.2. ([9]) A subset X of a poset P is said to be order generating
if x = inf(t2 (N X) for all z € P.

Evidently, Theorems 5.3 and 6.1 imply the following two results.

COROLLARY 6.2.1. In a finite Boolean poset P, the set IRR(P)\{1} is order
generating.

COROLLARY 6.2.2. In a finite Boolean poset P, the set PRI(P)\{1} is order
generating.

Remark 2. In Ref. [I0], it has been proved that in a continuous semilattice,
every element can be generated by the irreducible elements, but it is pitiful
that this result can not be extended to continuous posets without additional
conditions. It is easy to find this from Figure 3. The element a can not be
generated by the only two nonidentity irreducible elements d, c. However, the
poset in Figure 3 is generated by all the prime elements.

Although the condition that all the irreducible elements generate continuous
posets may not hold, we shall show that in a finite poset, all the irreducible
elements except the top are contained in every order generating subset.

PROPOSITION 6.3. If X is an order generating subset of a finite poset P, then
IRR(P)\ {1} C X.

Proof. Since X is order generating, then for every p € P, we have p =
inf(tp( X). Now assume that p € IRR(P) \ {1}. If p is maximal in P, then it
is obvious that p € X. If p is not maximal and p ¢ X, then tp( X C 1tp\{p}.
Since P is finite and Tp\{p} is a filter, then inf(Tp () X) > p, which contradicts

p=inf(tpNX). O
PROPOSITION 6.4. Let P be a poset. If x is completely co-prime, then x_ is
prime.

Proof. Assume x is completely co-prime. Let a,b € P\lz_. Then a £ z_ and
b x_. Since z_ is the greatest element of P\1z, then a > x and b > z. Again
by © € P\|{x_, we have P\|z_ is a filter. Thus, z_ is prime. d
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THEOREM 6.5. Let P be a Boolean poset. Then we have the following properties:

(1) = is prime (irreducible, completely prime, completely irreducible) iff ' is
co-prime (co-irreducible, completely co-prime, completely co-irreducible),
respectively.

(2) x is prime (irreducible, completely prime, completely irreducible) iff x* is
co-prime (co-irreducible, completely co-prime, completely co-irreducible),
respectively.

DEFINITION 6.3. ([9]) Let P be a poset. For all z,y € P, we say that z is
way-below y, denoted by x < y if for each directed set D C P with sup D exists,
y < sup D implies x < d for some d € D. An element satisfying x < « is said
to be compact.

DEFINITION 6.4. ([9]) A poset P is called continuous if for every xz € P, |z =
{u € P|u< z} is directed and x = sup|}x. Moreover, if every element of P
can be represented as the supremum of the compact elements less than it, then
P is called algebraic.

DEFINITION 6.5. ([9]) Let P be a poset. An upper set U = 1U is called an open
set if for each directed set D C P, sup D € U implies D N U # 0.

DEFINITION 6.6. ([9]) A sup semilattice P is called join continuous if it is filtered
complete and satisfies 2 \/inf D = inf{z\/ D} for all z € P and all filtered sets
DCP.

It is mentioned in [9] that each completely irreducible element is maximal
in P\1k for some compact elements of join continuous distributive complete
lattices. Now, we extend this result to the join continuous distributive sup
semilattices. Other assertions about join continuous characterization can be
seen in [I7].

THEOREM 6.6. In a join continuous distributive sup semilattice, x is completely
irreducible iff x is irreducible and mazimal in P\Tk for some compact element k.

Proof. It is illustrated in Theorem 5.1 that in a distributive poset, an element
x is completely irreducible, then x is prime. Therefore, U = P\lz is a scott
open filter. Set k = inf U. Since P is join continuous, then z\/ k = 2 \/inf U =
inf(z\/U) > min(tz\{z}) = 27 > z. It follows that k £ z, i.e. k€ P\la =U.
Therefore, Tk = U, which means 1k is an open filter. Then for every directed
set D, if k < sup D, then sup D € Tk. By the definition of the open filter, there
exists some d € D such that d € 1k. Hence, k is compact. Combining U = P\|x
with 1k = U, we have P\1Tk = Jx. Therefore, = is maximal in P\1Tk.
Conversely, let = be irreducible and maximal in P\1Tk for some compact el-
ement k. If x is maximal in P, then it is completely irreducible, as k £ z
implies « # 1. If z is not maximal in P, then () # tz\{z} C tk. Hence, 2t =
inf(tz\{x}) exists and " € tz\{z}. Hence, x is completely irreducible. O
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The auxiliary relation denoted by < is a binary relation which was investigated
in [9] to fit a more general framework than way-below relation, so way-below re-
lation becomes the smallest approximating relation. Later, the multiplicative
auxiliary relation is well defined in semilattice to characterize the relation be-
tween pseudoprime elements and prime elements. In the following, we introduce
the multiplicative auxiliary relation on posets.

DEFINITION 6.7. An auxiliary relation on a poset P is called multiplicative if
for all z € P, the set {y € P |z <y} is a filter.

PROPOSITION 6.7. Let P be a poset. The following conditions are all equivalent
for any auziliary relation <.

(1) The auziliary relation < on P is multiplicative.

(2) For all a,z,y € P, the relations a < x and a < y imply there exists an
element v € (z,y)" such that a < v.

(3) For all a,b,z,y € P, the relations a < x and b < y imply there exists an
element v € (z,y)! such that u < v for all u € (a,b)’.

Proof. According to the definition of the filter, (1) < (2) and (2) < (3)
are straightforward. O

THEOREM 6.8. Let P be a Boolean poset. Then a proper ideal is prime if and
only if it is mazximal.

Proof. Let I be a nonempty proper prime ideal of P. Then [ is maximal.
Otherwise, if J is an ideal such that I C J C P, then there exists an element
a € J,but a ¢ I. Since J and I are proper ideals, then o’ € P\J C P\I and
a € P\I. This, together with the fact that P\I is a filter yields P = I, which is
a contradiction.

Conversely, let I be a maximal ideal. Then I must be a prime ideal. Oth-
erwise, suppose I is not a prime ideal, then P\I is not a filter. Then there
exists two elements a,b € P\I such that ¢ ¢ (a,b)! for all ¢ € P\I. The above
statement implies that there are two elements a’,b’ € I such that the assertion
that there exists an element of I more than both @’ and b’ fails. A contradiction
to I is an ideal. Therefore, I is a prime ideal. O

Remark 3. In [7,[I8], the properties of prime ideals and maximal ideals are
discussed in detail, but the ideals used in the above-mentioned papers are Frink
ideals, which are different from the ideals in this paper.

COROLLARY 6.8.1. Let P be a Boolean poset and a € P is prime. Then da' is a
mazimal ideal.

PROPOSITION 6.9. Let P be a finite Boolean poset with n prime elements. Then
there are exactly n prime ideals (maximal ideals).

Proof. By Theorem 5.3 and Corollary 6.8.1, we get the conclusion easily. [
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PROPOSITION 6.10. Let P be a finite Boolean poset. Then for a,b € P with
b £ a, there exists a prime ideal I of P such thata € I, b ¢ I.

Proof. Since b £ a, then (¢/,a)" # {1}. There exists a coatom ¢ such that
c € (b',a)*. Therefore, a € ¢! and b ¢ ¢!. This completes the proof. O

Notice that each prime element leads to a prime ideal, but the converse in
general fails. Then the pseudoprime element as a more general ingredient was
introduced. In a continuous lattice, pseudoprimes are exactly those elements
which can be approximated by prime elements from a certain attitude [9].

DEFINITION 6.8. An element p of a poset P is called pseudoprime if p = sup [
for some prime ideal I C P. The set of pseudoprime elements are denoted by
U PRI(P).

By the definition of the pseudoprime element and Proposition 6.5, pseudo-
prime elements agree with prime elements in finite Boolean posets. This, to-
gether with Theorem 5.3 yields the following theorem.

THEOREM 6.11. Let P be a finite Boolean poset. Then COA(P) = M(P) =
IRR(P) = PRI(P) = ¥ PRI(P).

PROPOSITION 6.12. Let P be a continuous poset. If < is multiplicative, then
the following conditions are equivalent for an element p € P:

(1) p is pseudoprime.
(2) If for all u € (a,b)!, u < p then a < p orb < p.
(3) p is prime.

Proof. Clearly (3) implies (1).

(1) implies (2): Let p be a pseudoprime element, and suppose that for all
u € (a,b)!, u < p. Let I be a prime ideal with sup I = p. Since P is continuous,
then {z | z < p} C I. By the hypothesis, (a,b)! C I. Hence, P\I C P\(a,b)".
Let a,b € P\I. Since P\I is a filter, then there is an element ¢ € (a,b)! (| P\I,
a contradiction to P\I C P\(a,b)!. Hence,a € I or b € I.

(2) implies (3): Suppose p is not prime, then P\|p is not a filter. There
must exist x,y € P\|p such that (x,3)'(P\lp = 0. Then (x,y)! C |p. By
the continuity of P, we find elements a,b £ p with ¢ < z and b < y. Since
< is multiplicative, we conclude that for all u € (a,b)!, there exists v € (z,y)

such that © < v < p. By the hypothesis, x < p and y < p. A contradiction to
z,y € P\]p. O

The properties of arithmetic semilattice were investigated in [9]. Subse-
quently, the concept of semiarithmetic lattice was introduced in [I4]. In the
following, we introduce the concept of arithmetic poset and extend some rela-
tive results in semilattices appeared in [9] to posets.
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DEFINITION 6.9. A poset P is called an arithmetic poset if it is algebraic and
for all compact elements x,y, there is a compact element u € (z, y)l.

Notice that if the arithmetic poset is also a semilattice, the above definition
agrees with the definition of arithmetic semilattice in [9].

PROPOSITION 6.13. Let P be a poset. Then P is arithmetic iff the way-below
relation < is multiplicative.

Proof. Let a < x and a < y. Then there are compact elements ¢, k with
a<c<zanda<k<y. Thus, there is an element u € (e, k)l such that a < u,
and there is an element v € (z,y)! such that 2 < v for all z € (c, k). Hence,
u < v. By the transitivity, a < v, then < is multiplicative.

Conversely, let * < 2 and y < y. Then for all u € (x,y)!, there is an
element v € (z,y)! such that u < v. Since v € (z,y)!, then v < v. So P is
arithmetic. O

By Propositions 6.4 and 6.5, we immediately arrive at the following conclu-
sion.

COROLLARY 6.13.1. An element of an arithmetic poset is pseudoprime if and
only if it is prime.

210

NP
DR

1

FIGURE 5.

Example 2. Let a Vb, a A b denote the least common multiple and the greatest
common divisor of a and b, respectively. Then the poset displayed in Figure 5
is a Boolean poset. By the definition of the compact element, every element in
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Figure 5 is compact. Moreover, 42 =7V 2V 3,70 =7V 2V 5,106 =7V 3V 5,
30 =5Vv2V3, and 210 = 7V 2V 3V 5. Therefore, it is an algebraic, which
is generated by 2,3,5,7. Since the least element 1 is compact, then the second
condition of Definition 6.9 holds naturally. Thus, the poset displayed in Figure 5
is an arithmetic poset, but not an arithmetic semilattice. Further, there are four
prime elements, that is, 42,70,105,30, which yield exactly four prime ideals
(maximal ideals) as follows: 42! = {42,2,3,7,1}, 70! = {70,2,5,7,1}, 105! =
{105,5,3,7,1}, and 30" = {30,2,3,5,1}.

7. Conclusion

In this paper, we show prime elements, pseudoprime elements, irreducible
elements and coatoms are the same in finite Boolean posets, which is a general-
ization of the results in Boolean lattices. Furthermore, a general representation
to finite Boolean posets is deduced. Some other properties of these elements
in posets are investigated. With our introduction of multiplicative relation on
posets, pseudoprime elements coincide with prime elements in arithmetic posets.
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