Home Technology Standards für das Internet der Dinge
Article
Licensed
Unlicensed Requires Authentication

Standards für das Internet der Dinge

Heterogenität, Interoperabilität und Herausforderungen
  • Marc P. Jensen and Dieter Uckelmann
Published/Copyright: March 20, 2020

Kurzfassung

Die digitale Transformation von Unternehmen wird nicht zuletzt durch das Internet der Dinge unterstützt. Eine besondere Herausforderung für die vernetzte Produktionswirtschaft ist eine übergeordnete Verknüpfung der einzelnen IT-Systeme und ein standardisierter Austausch von Daten zwischen den Akteuren. Nebenher entstehen immer größere Datenmengen. Für Unternehmen birgt dieser Informationsschatz ein großes Potenzial, wenn diese Daten im richtigen Kontext interpretiert und zusammengefügt werden können. Forschung und Industrie haben bereits verschiedene Technologien entwickelt und unterschiedliche Ansätze vorgestellt. Jedoch stellen die unterschiedlichen Anforderungen der einzelnen IoT-Domänen einen einheitlichen Informationsaustausch und standardisierte Datenmodelle noch immer vor Hindernisse.

Abstract

The digital transformation of businesses is supported by the Internet of Things. A particular challenge is the linking of different IT-systems and the standardised data exchange. For businesses, this provides a valuable source of data, if they are able to use the information in a required context. Technologies like Augmented Reality can be used to provide the user access to a virtual data overlay. Business processes can be enhanced by linking spatial information and IoT-data. Several specifications were developed over the years but the standardised data exchange between the different IoT-domains still remains a challenge to complete.


Marc Philipp Jensen ist Wissenschaftlicher Mitarbeiter an der Hochschule für Technik Stuttgart mit dem Forschungsschwerpunkt Sensoren und IoT-Standards.

Prof. Dr.-Ing. Dieter Uckelmann ist Studiendekan des Bachelorstudiengangs Informationslogistik an der Hochschule für Technik in Stuttgart und seit 2018 Gastprofessor an der Universität Parma.


Literatur

1. Gartner Identifies Top 10 Strategic IoT Technologies and Trends, Gartner. [Online]. Verfügbar unter: https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends. [Zugegriffen: 04-Sep-2019]Search in Google Scholar

2. Pflaum, A. A.; Gölzer, P.: The IoT and Digital Transformation: Toward the Data-Driven Enterprise. IEEE Pervasive Computing17 (2018) 1, S. 879110.1109/MPRV.2018.011591066Search in Google Scholar

3. Conde Gallego, B.; Drexl, J.: IoT Connectivity Standards: How Adaptive is the Current SEP Regulatory Framework?IIC50 (2019) 1, S. 13515610.1007/s40319-018-00774-wSearch in Google Scholar

4. Goudos, S. K. et al.: A Survey of IoT Key Enabling and Future Technologies: 5G, Mobile IoT, Sematic Web and Applications. Wireless Pers Commun97 (2017) 2, S. 1645167510.1007/s11277-017-4647-8Search in Google Scholar

5. Gardaševic´, G. et al.: The IoT Architectural Framework, Design Issues and Application Domains, Wireless Pers Commun92 (2017) 1, S. 12714810.1007/s11277-016-3842-3Search in Google Scholar

6. Balaji, S. et al.: IoT Technology, Applications and Challenges: A Contemporary Survey. Wireless Pers Commun, 201910.1007/s11277-019-06407-wSearch in Google Scholar

7. Bermudez-Edo, M. et al.: IoT-Lite: A Lightweight Semantic Model for the Internet of Things and its Use with Dynamic Semantics. Pers Ubiquit Comput21 (2017) 3, S. 47548710.1007/s00779-017-1010-8Search in Google Scholar

8. Lomotey, R. K.; Pry, J. C.; Chai, C.: Traceability and Visual Analytics for the Internet-of-Things (IoT) Architecture. World Wide Web21 (2018) 1, S. 73210.1007/s11280-017-0461-1Search in Google Scholar

9. Iglesias-Urkia, M. et al.: Analysis of CoAP Implementations for Industrial Internet of Things: A Survey. J Ambient Intell Human Comput10 (2019) 7, S. 2505251810.1007/s12652-018-0729-zSearch in Google Scholar

10. Schooler, E. M. et al.: Rational Interoperability: A Pragmatic Path toward a Data-Centric IoT. In: Proceedings of the IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018, S. 1139114910.1109/ICDCS.2018.00113Search in Google Scholar

11. Bröring, A. et al.: Enabling IoT Ecosystems through Platform Interoperability. IEEE Software34 (2017) 1, S. 546110.1109/MS.2017.2Search in Google Scholar

12. Blackstock, M.; Lea, R.: IoT Interoperability: A Hub-based Approach. In: Proceedings of the International Conference on the Internet of Things (IOT), 2014, S. 798410.1109/IOT.2014.7030119Search in Google Scholar

13. Happ, D. et al.: Meeting IoT Platform Requirements with Open Pub/Sub solutions, Ann. Telecommun.72 (2017) 1, S. 415210.1007/s12243-016-0537-4Search in Google Scholar

14. Profanter, S. et al.: OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT), 2019, S. 95596210.1109/ICIT.2019.8755050Search in Google Scholar

15. Pfrommer, J. et al.: Hybrid OPC UA and DDS: Combining Architectural Styles for the Industrial Internet. In: Proceedings of the IEEE World Conference on Factory Communication Systems (WFCS), 2016, S. 1710.1109/WFCS.2016.7496515Search in Google Scholar

16. Gezer, C.; Tas¸kın, E.: An Overview of OneM2M Standard. In: Proceedings of the 24th Signal Processing and Communication Application Conference (SIU), 2016, S. 1705170810.1109/SIU.2016.7496087Search in Google Scholar

17. Park, S.: OCF: A New Open IoT Consortium. In: Proceedings of the 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2017, S. 35635910.1109/WAINA.2017.86Search in Google Scholar

18. Bertaux, L. et al.: A DDS/SDN Based Communication System for Efficient Support of Dynamic Distributed Real-Time Applications. In: Proceedings of the IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications, 2014, S. 778410.1109/DS-RT.2014.18Search in Google Scholar

19. Floeck, M. et al.: Horizontal M2M Platforms Boost Vertical Industry: Effectiveness study for building energy management systems. In: Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), 2014, S. 152010.1109/WF-IoT.2014.6803109Search in Google Scholar

20. Bruckner, D. et al.: An Introduction to OPC UA TSN for Industrial Communication Systems. Proceedings of the IEEE107 (2019) 6, 19, S. 1121113110.1109/JPROC.2018.2888703Search in Google Scholar

21. Cavalieri, S.; Scroppo, M. S.: A Proposal to Make OCF and OPC UA Interoperable. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT), 2018, S. 1551155610.1109/ICIT.2018.8352412Search in Google Scholar

22. Cavalieri, S.; Salafia, M. G.; Scroppo, M. S.: Towards Interoperability between OPC UA and OCF. Journal of Industrial Information Integration (2019) 15, S. 122137Search in Google Scholar

23. Cavalieri, S.; Salafia, M. G.; Scroppo, M. S.: Mapping OPC UA AddressSpace to OCF resource model. In: IEEE Industrial Cyber-Physical Systems (ICPS), 2018, S. 135140.Search in Google Scholar

Online erschienen: 2020-03-20
Erschienen im Druck: 2020-03-27

© 2020, Carl Hanser Verlag, München

Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/104.112245/html
Scroll to top button