Home Use of green fluorescent proteins for in vitro biosensing
Article
Licensed
Unlicensed Requires Authentication

Use of green fluorescent proteins for in vitro biosensing

  • Zbynek Heger , Ondrej Zitka , Zdenka Fohlerova , Miguel Angel Merlos Rodrigo , Jaromir Hubalek , Rene Kizek and Vojtech Adam EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

Due to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.

References

Abedi, M. R., Caponigro, G., & Kamb, A. (1998). Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Research, 26, 623-630. DOI: 10.1093/nar/26.2.623.10.1093/nar/26.2.623Search in Google Scholar

Ai,H. W.,Olenych, S.G., Wong, P.,Davidson,M.W., & Campbell, R. E. (2008). Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: Identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biology, 6, 13. DOI: 10.1186/1741-7007-6-13.10.1186/1741-7007-6-13Search in Google Scholar

Arosio, D., Ricci, F., Marchetti, L., Gualdani, R., Albertazzi, L., & Beltram, F. (2010). Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nature Methods, 7, 516-518. DOI: 10.1038/nmeth.1471.10.1038/nmeth.1471Search in Google Scholar

Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241-11246. DOI: 10.1073/pnas.96.20.11241.10.1073/pnas.96.20.11241Search in Google Scholar

Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99, 7877-7882. DOI: 10.1073/pnas.082243699.10.1073/pnas.082243699Search in Google Scholar

Campbell, R. E. (2009). Fluorescent-protein-based biosensors: Modulation of energy transfer as a design principle. Analytical Chemistry, 81, 5972-5979. DOI: 10.1021/ac802613w.10.1021/ac802613wSearch in Google Scholar

Chen, G. W., Song, F. L., Xiong, X. Q., & Peng, X. J. (2013). Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Industrial & Engineering Chemistry Research, 52, 11228-11245. DOI: 10.1021/ie303485n.10.1021/ie303485nSearch in Google Scholar

Coumans, J. V. F., Gau, D., Poljak, A.,Wasinger, V., Roy, P., & Moens, P. (2014). Green fluorescent protein expression triggers proteome changes in breast cancer cells. Experimental Cell Research, 320, 33-45. DOI: 10.1016/j.yexcr.2013.07.019.10.1016/j.yexcr.2013.07.019Search in Google Scholar

Cubitt, A.B.,Heim,R.,Adams, S. R.,Boyd, A.E.,Gross, L.A., & Tsien, R. Y. (1995). Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences, 20, 448-455. DOI: 10.1016/s0968-0004(00)89099-4.10.1016/S0968-0004(00)89099-4Search in Google Scholar

Day, R. N., & Davidson, M. W. (2009). The fluorescent protein palette: Tools for cellular imaging. Chemical Society Reviews, 38, 2887-2921. DOI: 10.1039/b901966a.10.1039/b901966aSearch in Google Scholar PubMed PubMed Central

Dennis, A. M., & Bao, G. (2008). Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Letters, 8, 1439-1445. DOI: 10.1021/nl080 358+.Search in Google Scholar

Dennis, A. M., Sotto, D. C., Mei, B. C., Medintz, I. L., Mattoussi, H., & Bao, G. (2010). Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjugate Chemistry, 21, 1160-1170. DOI: 10.1021/bc900500m.10.1021/bc900500mSearch in Google Scholar

Dikici, E., Deo, S. K., & Daunert, S. (2003). Drug detection based on the conformational changes of calmodulin and the fluorescence of its enhanced green fluorescent protein fusion partner. Analytica Chimica Acta, 500, 237-245. DOI: 10.1016/j.aca.2003.08.027.10.1016/j.aca.2003.08.027Search in Google Scholar

Doi, N., & Yanagawa, H. (1999). Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Letters, 453, 305-307. DOI: 10.1016/s0014-5793(99)00732-2.10.1016/S0014-5793(99)00732-2Search in Google Scholar

García-Alonso, J., Greenway, G. M., Hardege, J. D., & Haswell, S. J. (2009). A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds. Biosensors & Bioelectronics, 24, 1508-1511. DOI: 10.1016/j.bios.2008.07.074.10.1016/j.bios.2008.07.074Search in Google Scholar PubMed

Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., & Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein: Mechanism and applications. Journal of Biological Chemistry, 276, 29188-29194. DOI: 10.1074/jbc.m102815200. Hudson, P. J., & Souriau, C. (2003). Engineered antibodies. Nature Medicine, 9, 129-134. DOI: 10.1038/nm0103-129.10.1038/nm0103-129Search in Google Scholar PubMed

Ip, D. T. M., Wong, K. B., & Wan, D. C. C. (2007). Characterization of novel orange fluorescent protein cloned from cnidarian tube anemone Cerianthus sp. Marine Biotechnology, 9, 469-478. DOI: 10.1007/s10126-007-9005-5.10.1007/s10126-007-9005-5Search in Google Scholar PubMed

Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., & Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nature Biotechnology, 24, 577-581. DOI: 10.1038/nbt1207.10.1038/nbt1207Search in Google Scholar PubMed

Kremers, G. J., Goedhart, J., van den Heuvel, D. J., Gerritsen, H. C., & Gadella, T. W. J. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46, 3775-3783. DOI: 10.1021/bi0622874.10.1021/bi0622874Search in Google Scholar PubMed

Kuang, Y., Biran, I., & Walt, D. R. (2004). Living bacterial cell array for genotoxin monitoring. Analytical Chemistry, 76, 2902-2909. DOI: 10.1021/ac0354589.10.1021/ac0354589Search in Google Scholar PubMed

Lim, D. V., Simpson, J. M., Kearns, E. A., & Kramer, M. F. (2005). Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 18, 583-607. DOI: 10.1128/cmr.18.4.583-607.2005.10.1128/CMR.18.4.583-607.2005Search in Google Scholar PubMed PubMed Central

Mazzola, P. G., Ishii, M., Chau, E., Cholewa, O., & Penna, T. C. V. (2006). Stability of green fluorescent protein (GFP). in chlorine solutions of varying pH. Biotechnology Progress, 22, 1702-1707. DOI: 10.1021/bp060217i.10.1021/bp060217iSearch in Google Scholar PubMed

McFadden, P. (2002). Broadband biodetection: Holmes on a chip. Science, 297, 2075-2076. DOI: 10.1126/science.297. 5589.2075.Search in Google Scholar

Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., & Mauro, J. M. (2003). Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2, 630-638. DOI: 10.1038/nmat961.10.1038/nmat961Search in Google Scholar PubMed

Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, T. W. J., & Chudakov, D. M. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods, 4, 555-557. DOI: 10.1038/nmeth1062.10.1038/nmeth1062Search in Google Scholar PubMed

Nguyen, A. W., & Daugherty, P. S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology, 23, 355-360. DOI: 10.1038/nbt1066.10.1038/nbt1066Search in Google Scholar PubMed

Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392-1395. DOI: 10.1126/science.273.5280.1392.10.1126/science.273.5280.1392Search in Google Scholar PubMed

Patterson, G. H., Piston, D.W., & Barisas, B. G. (2000). F¨orster distances between green fluorescent protein pairs. Analytical Biochemistry, 284, 438-440. DOI: 10.1006/abio.2000.4708.10.1006/abio.2000.4708Search in Google Scholar PubMed

Pavoor, T. V., Cho, Y. K., & Shusta, E. V. (2009). Development of GFP-based biosensors possessing the binding properties of antibodies. Proceedings of the National Academy of Sciences of the United States of America, 106, 11895-11900. DOI: 10.1073/pnas.0902828106.10.1073/pnas.0902828106Search in Google Scholar PubMed PubMed Central

Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79-88. DOI: 10.1038/nbt1172.10.1038/nbt1172Search in Google Scholar PubMed

Piston, D. W., & Kremers, G. J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends in Biochemical Sciences, 32, 407-414. DOI: 10.1016/j.tibs.2007.08.003.10.1016/j.tibs.2007.08.003Search in Google Scholar PubMed

Pouwels, L. J., Zhang, L. P., Chan, N. H., Dorrestein, P. C., & Wachter, R. M. (2008). Kinetic isotope effect studies on the de novo rate of chromophore formation in fastand slow-maturing GFP variants. Biochemistry, 47, 10111-10122. DOI: 10.1021/bi8007164.10.1021/bi8007164Search in Google Scholar PubMed PubMed Central

Puckett, L. G., Dikici, E., Lai, S., Madou, M., Bachas, L. G., & Daunert, S. (2004). Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Analytical Chemistry, 76, 7263-7268. DOI: 10.1021/ac049758h.10.1021/ac049758hSearch in Google Scholar PubMed

Qu, L. H., & Peng, X. G. (2002). Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 124, 2049-2055. DOI: 10.1021/ja017002j.10.1021/ja017002jSearch in Google Scholar PubMed

Richmond, T. A., Takahashi, T. T., Shimkhada, R., & Bernsdorf, J. (2000). Engineered metal binding sites on green fluorescence protein. Biochemical and Biophysical Research Communications, 268, 462-465. DOI: 10.1006/bbrc.1999. 1244.Search in Google Scholar

Rizzo, M. A., Springer, G. H., Granada, B., & Piston, D. W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnology, 22, 445-449. DOI: 10.1038/nbt945.10.1038/nbt945Search in Google Scholar PubMed

Sapsford, K. E., Berti, L., & Medintz, I. L. (2006a). Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angewandte Chemie International Edition, 45, 4562-4589. DOI: 10.1002/anie.200503873.10.1002/anie.200503873Search in Google Scholar PubMed

Sapsford, K. E., Pons, T., Medintz, I. L., & Mattoussi, H. (2006b). Biosensing with luminescent semiconductor quantum dots. Sensors, 6, 925-953. DOI: 10.3390/s6080925.10.3390/s6080925Search in Google Scholar

Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., Semenova, T. N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A., & Matz, M. V. (2004). GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Molecular Biology and Evolution, 21, 841-850. DOI: 10.1093/molbev/msh079.10.1093/molbev/msh079Search in Google Scholar PubMed

Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567-1572. DOI: 10.1038/nbt1037.10.1038/nbt1037Search in Google Scholar PubMed

Shaner, N. C., Patterson, G. H., & Davidson, M. W. (2007). Advances in fluorescent protein technology. Journal of Cell Science, 120, 4247-4260. DOI: 10.1242/jcs.005801.10.1242/jcs.005801Search in Google Scholar PubMed

Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., & Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5, 545-551. DOI: 10.1038/nmeth.1209.10.1038/nmeth.1209Search in Google Scholar PubMed PubMed Central

Shanmugaratnam, S., Eisenbeis, S., & Hocker, B. (2012). A highly stable protein chimera built from fragments of different folds. Protein Engineering Design and Selection, 25, 699-703. DOI: 10.1093/protein/gzs074.10.1093/protein/gzs074Search in Google Scholar PubMed

Shcherbo, D., Shemiakina, I. I., Ryabova, A. V., Luker, K. E., Schmidt, B. T., Souslova, E. A., Gorodnicheva, T. V., Strukova, L., Shidlovskiy, K. M., Britanova, O. V., Zaraisky, A. G., Lukyanov, K. A., Loschenov, V. B., Luker, G. D., & Chudakov, D. M. (2010). Near-infrared fluorescent proteins. Nature Methods, 7, 827-829. DOI: 10.1038/nmeth.1501.10.1038/nmeth.1501Search in Google Scholar PubMed PubMed Central

Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J. H., Gr¨uenwald, D., Souslova, E. A., Chudakov, D. M., & Verkhusha, V. V. (2008). Conversion of red fluorescent protein into a bright blue probe. Chemistry & Biology, 15, 1116-1124. DOI: 10.1016/j.chembiol.2008.08.006.10.1016/j.chembiol.2008.08.006Search in Google Scholar PubMed PubMed Central

Sun, P., Liu, Y., Sha, J., Zhang, Z. Y., Tu, Q., Chen, P., & Wang, J. Y. (2011). High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosensors & Bioelectronics, 26, 1993-1999. DOI: 10.1016/j.bios.2010.08.062.10.1016/j.bios.2010.08.062Search in Google Scholar PubMed

Tansila, N., Tantimongcolwat, T., Isarankura-Na-Ayudhya, C., Nantasenamat, C., & Prachayasittikul, V. (2007). Rational design of analyte channels of the green fluorescent protein for biosensor applications. International Journal of Biological Sciences, 3, 463-470.10.7150/ijbs.3.463Search in Google Scholar PubMed PubMed Central

Tomosugi, W., Matsuda, T., Tani, T., Nemoto, T., Kotera, I., Saito, K., Horikawa, K., & Nagai, T. (2009). An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods, 6, 351-353. DOI: 10.1038/nmeth.1317.10.1038/nmeth.1317Search in Google Scholar PubMed

Tsutsui, H., Karasawa, S., Okamura, Y., & Miyawaki, A. (2008). Improving membrane voltage measurements using FRET with new fluorescent proteins. Nature Methods, 5, 683-685. DOI: 10.1038/nmeth.1235.10.1038/nmeth.1235Search in Google Scholar PubMed

Wachter, R. M. (2007). Chromogenic cross-link formation in green fluorescent protein. Accounts of Chemical Research, 40, 120-127. DOI: 10.1021/ar040086r.10.1021/ar040086rSearch in Google Scholar PubMed

Wang, L., & Tsien, R. Y. (2006). Evolving proteins in mammalian cells using somatic hypermutation. Nature Protocols, 1, 1346-1350. DOI: 10.1038/nprot.2006.243.10.1038/nprot.2006.243Search in Google Scholar PubMed

Yang, F., Moss, L. G., & Phillips, G. N. (1996). The molecular structure of green fluorescent protein. Nature Biotechnology, 14, 1246-1251. DOI: 10.1038/nbt1096-1246.10.1038/nbt1096-1246Search in Google Scholar PubMed

Zhang, J., Campbell, R. E., Ting, A. Y., & Tsien, R. Y. (2002). Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology, 3, 906-918. DOI: 10.1038/nrm976.10.1038/nrm976Search in Google Scholar PubMed

Zhang, L. P., Patel, H. N., Lappe, J. W., & Wachter, R. M. (2006). Reaction progress of chromophore biogenesis in green fluorescent protein. Journal of the American Chemical Society, 128, 4766-4772. DOI: 10.1021/ja0580439. 10.1021/ja0580439Search in Google Scholar PubMed

Received: 2014-2-16
Revised: 2014-3-17
Accepted: 2014-3-18
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0588-9/pdf
Scroll to top button