Abstract
Two lipases, Novozyme 435 (lipase B from Candida Antarctica) and Lipozyme TL IM (Thermomyces lanuginosus) were used successfully for the kinetic resolution of racemic 1-(2-furyl)-3-pentanol, the key intermediate in synthesis of the bark beetle pheromone, chalcogran. The desired S-(+)-enantiomer was prepared in enantiomeric excesses higher than 98 % and with yields of 26.3 % and 32.5 %, respectively. Methyl tert-butyl ether and vinyl acetate were found to be the best reaction media and the acetyl donor to achieve fast and effective resolution.
[1] Beck, J. J., Mahoney, N. E., Cook, D., & Gee, W. S. (2012). Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. Journal of Agricultural and Food Chemistry, 60, 11869–11876. DOI: 10.1021/jf304157q. http://dx.doi.org/10.1021/jf304157q10.1021/jf304157qSuche in Google Scholar
[2] Byers, J. A., Högberg, H. E., Unelius, C. R., Birgersson, G., & Löfqvist, J. (1989). Structure-activity studies on aggregation pheromone components of Pityogenes chalcographus (Coleoptera: Scolytidae). All stereoisomers of chalcogran and methyl 2,4-decadienoate. Journal of Chemical Ecology, 15, 685–695. DOI: 10.1007/bf01014711. http://dx.doi.org/10.1007/BF0101471110.1007/BF01014711Suche in Google Scholar
[3] Chan, J. Y. C., Hough, L., & Richardson, A. C. (1985). The synthesis of (R)- and (S)-spirobi-1,4-dioxane and related spirobicycles from D-fructose. Journal of the Chemical Society, Perkin Transactions 1, 1985, 1457–1462. DOI: 10.1039/p19850001457. http://dx.doi.org/10.1039/p1985000145710.1039/p19850001457Suche in Google Scholar
[4] Citron, C. A., Rabe, P., & Dickschat, J. S. (2012). The scent of bacteria: Headspace analysis for the discovery of natural products. Journal of Natural Products, 75, 1765–1776. DOI: 10.1021/np300468h. http://dx.doi.org/10.1021/np300468h10.1021/np300468hSuche in Google Scholar
[5] Cubero, I. I., Plaza Lopez-Espinosa, M. T., & Kari, N. (1994). Synthesis of optically active chalcogran from l-sorbose. Carbohydrate Research, 261, 231–242. DOI: 10.1016/0008-6215(94)84020-2. http://dx.doi.org/10.1016/0008-6215(94)84020-210.1016/0008-6215(94)84020-2Suche in Google Scholar
[6] Enders, D., Dahmen, W., Dederichs, E., & Weuster, P. (1983). Spiroacetals from acetone and oxiranes — a simple route to optically active 1,6-dioxaspiro[4,4]nonane-pheromones. Synthetic Communications, 13, 1235–1242. DOI: 10.1080/00397918308063739. http://dx.doi.org/10.1080/0039791830806373910.1080/00397918308063739Suche in Google Scholar
[7] Francke, W., Heemann, V., Gerken, B., Renwick, J. A. A., & Vité, J. P. (1977). 2-Ethyl-1,6-dioxaspiro[4,4]nonane, principal aggregation pheromone of Pityogenes chalcographus (L.). Naturwissenschaften, 64, 590–591. DOI: 10.1007/bf00450651. http://dx.doi.org/10.1007/BF0045065110.1007/BF00450651Suche in Google Scholar
[8] Högberg, H. E., Hedenström, E., Isaksson, R., & Wassgren, A. B. (1987). Preparation of the four stereoisomers of chalcogran, pheromone components of Pityogenes chalcographus and of both enantiomers of γ-caprolactone, pheromone component of Trogoderma granarium. Acta Chemica Scandinavica B, 41, 694–697. DOI: 10.3891/acta.chem.scand.41b-0694. http://dx.doi.org/10.3891/acta.chem.scand.41b-069410.3891/acta.chem.scand.41b-0694Suche in Google Scholar
[9] Hungerbühler, E., Naef, R., Wasmuth, D., Seebach, D., Loosli, H. R., & Wehrli, A. (1980). Synthese optisch aktiver 2-Methyl- und 2-Äthyl-1,6-dioxaspiro[4.4]-nonan- und -[4.5]decan-Pheromone aus einem gemeinsamen chiralen Vorläufer. Helvetica Chimica Acta, 63, 1960–1970 DOI: 10.1002/hlca.19800630724. http://dx.doi.org/10.1002/hlca.1980063072410.1002/hlca.19800630724Suche in Google Scholar
[10] Körblová, E., Koutek, B., Šaman, D., Svatoš, A., Maloň, P., & Romaňuk, M. (1990). Synthesis of optically active 1-(2-furyl)-3-pentanol. A simple route to (2S,5R/S)-chalcogran. Collection of Czechoslovak Chemical Communications, 55, 1234–1242. DOI: 10.1135/cccc19901234. http://dx.doi.org/10.1135/cccc1990123410.1135/cccc19901234Suche in Google Scholar
[11] Mori, K., Sasaki, M., Tamada, S., Suguro, T., & Masuda, S. (1979). Synthesis of optically active 2-ethyl-1,6-dioxaspiro [4.4]nonane (chalcogran), the principal aggregation pheromone of Pityogenes chalcographus (L.). Tetrahedron, 35, 1601–1605. DOI: 10.1016/0040-4020(79)80022-8. http://dx.doi.org/10.1016/0040-4020(79)80022-810.1016/0040-4020(79)80022-8Suche in Google Scholar
[12] Redlich, H., & Francke, W. (1980). Optically active chalcogran (2-ethyl-1,6-dioxaspiro[4.4]nonane). Angewandte Chemie International Edition in English, 19, 630–631. DOI: 10.1002/anie.198006301. http://dx.doi.org/10.1002/anie.19800630110.1002/anie.198006301Suche in Google Scholar
[13] Redlich, H. (1982). Chirale Bausteine aus Kohlenhydraten, VI. Synthese von (2R,5RS)- und (2S,5RS)-2-Ethyl-1,6-dioxaspiro-[4.4]nonan (Chalcogran) aus D-Glucose. Liebigs Annalen der Chemie, 1982, 708–716. DOI: 10.1002/jlac.198219820410. http://dx.doi.org/10.1002/jlac.19821982041010.1002/jlac.198219820410Suche in Google Scholar
[14] Schurig, V., & Weber, R. (1984). Use of glass and fused-silica open tubular columns for the separation of structural, configurational and optical isomers by selective complexation gas chromatography. Journal of Chromatography A, 289, 321–332. DOI: 10.1016/s0021-9673(00)95097-0. http://dx.doi.org/10.1016/S0021-9673(00)95097-010.1016/S0021-9673(00)95097-0Suche in Google Scholar
[15] Smith, L. R., Williams, H. J., & Silverstein, R. M. (1978). Facile synthesis of optically active 2-ethyl-1,6-dioxaspiro[4,4]nonane, component of the aggregation pheromone of the beetle Pityogenes chalcographus (L.). Tetrahedron Letters, 19, 3231–3232. DOI: 10.1016/s0040-4039(01)85601-x. http://dx.doi.org/10.1016/S0040-4039(01)85601-X10.1016/S0040-4039(01)85601-XSuche in Google Scholar
[16] Trapp, O., & Schurig, V. (2001). Determination of interconversion barriers by dynamic gas chromatography: Epimerization of chalcogran. Chemistry — A European Journal, 7, 1495–1502. DOI: 10.1002/1521-3765(20010401)7:7〈1495::AIDCHEM1495〉3.0.CO;2-M. http://dx.doi.org/10.1002/1521-3765(20010401)7:7<1495::AID-CHEM1495>3.0.CO;2-M10.1002/1521-3765(20010401)7:7<1495::AID-CHEM1495>3.0.CO;2-MSuche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Artikel in diesem Heft
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy