Startseite Enzymatic synthesis of a chiral chalcogran intermediate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enzymatic synthesis of a chiral chalcogran intermediate

  • Vladimír Mastihuba EMAIL logo , Pavel Čepec , Silvia Vlčková , Erika Farkašová , Mária Mastihubová und Pavel Bobal
Veröffentlicht/Copyright: 9. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two lipases, Novozyme 435 (lipase B from Candida Antarctica) and Lipozyme TL IM (Thermomyces lanuginosus) were used successfully for the kinetic resolution of racemic 1-(2-furyl)-3-pentanol, the key intermediate in synthesis of the bark beetle pheromone, chalcogran. The desired S-(+)-enantiomer was prepared in enantiomeric excesses higher than 98 % and with yields of 26.3 % and 32.5 %, respectively. Methyl tert-butyl ether and vinyl acetate were found to be the best reaction media and the acetyl donor to achieve fast and effective resolution.

[1] Beck, J. J., Mahoney, N. E., Cook, D., & Gee, W. S. (2012). Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. Journal of Agricultural and Food Chemistry, 60, 11869–11876. DOI: 10.1021/jf304157q. http://dx.doi.org/10.1021/jf304157q10.1021/jf304157qSuche in Google Scholar

[2] Byers, J. A., Högberg, H. E., Unelius, C. R., Birgersson, G., & Löfqvist, J. (1989). Structure-activity studies on aggregation pheromone components of Pityogenes chalcographus (Coleoptera: Scolytidae). All stereoisomers of chalcogran and methyl 2,4-decadienoate. Journal of Chemical Ecology, 15, 685–695. DOI: 10.1007/bf01014711. http://dx.doi.org/10.1007/BF0101471110.1007/BF01014711Suche in Google Scholar

[3] Chan, J. Y. C., Hough, L., & Richardson, A. C. (1985). The synthesis of (R)- and (S)-spirobi-1,4-dioxane and related spirobicycles from D-fructose. Journal of the Chemical Society, Perkin Transactions 1, 1985, 1457–1462. DOI: 10.1039/p19850001457. http://dx.doi.org/10.1039/p1985000145710.1039/p19850001457Suche in Google Scholar

[4] Citron, C. A., Rabe, P., & Dickschat, J. S. (2012). The scent of bacteria: Headspace analysis for the discovery of natural products. Journal of Natural Products, 75, 1765–1776. DOI: 10.1021/np300468h. http://dx.doi.org/10.1021/np300468h10.1021/np300468hSuche in Google Scholar

[5] Cubero, I. I., Plaza Lopez-Espinosa, M. T., & Kari, N. (1994). Synthesis of optically active chalcogran from l-sorbose. Carbohydrate Research, 261, 231–242. DOI: 10.1016/0008-6215(94)84020-2. http://dx.doi.org/10.1016/0008-6215(94)84020-210.1016/0008-6215(94)84020-2Suche in Google Scholar

[6] Enders, D., Dahmen, W., Dederichs, E., & Weuster, P. (1983). Spiroacetals from acetone and oxiranes — a simple route to optically active 1,6-dioxaspiro[4,4]nonane-pheromones. Synthetic Communications, 13, 1235–1242. DOI: 10.1080/00397918308063739. http://dx.doi.org/10.1080/0039791830806373910.1080/00397918308063739Suche in Google Scholar

[7] Francke, W., Heemann, V., Gerken, B., Renwick, J. A. A., & Vité, J. P. (1977). 2-Ethyl-1,6-dioxaspiro[4,4]nonane, principal aggregation pheromone of Pityogenes chalcographus (L.). Naturwissenschaften, 64, 590–591. DOI: 10.1007/bf00450651. http://dx.doi.org/10.1007/BF0045065110.1007/BF00450651Suche in Google Scholar

[8] Högberg, H. E., Hedenström, E., Isaksson, R., & Wassgren, A. B. (1987). Preparation of the four stereoisomers of chalcogran, pheromone components of Pityogenes chalcographus and of both enantiomers of γ-caprolactone, pheromone component of Trogoderma granarium. Acta Chemica Scandinavica B, 41, 694–697. DOI: 10.3891/acta.chem.scand.41b-0694. http://dx.doi.org/10.3891/acta.chem.scand.41b-069410.3891/acta.chem.scand.41b-0694Suche in Google Scholar

[9] Hungerbühler, E., Naef, R., Wasmuth, D., Seebach, D., Loosli, H. R., & Wehrli, A. (1980). Synthese optisch aktiver 2-Methyl- und 2-Äthyl-1,6-dioxaspiro[4.4]-nonan- und -[4.5]decan-Pheromone aus einem gemeinsamen chiralen Vorläufer. Helvetica Chimica Acta, 63, 1960–1970 DOI: 10.1002/hlca.19800630724. http://dx.doi.org/10.1002/hlca.1980063072410.1002/hlca.19800630724Suche in Google Scholar

[10] Körblová, E., Koutek, B., Šaman, D., Svatoš, A., Maloň, P., & Romaňuk, M. (1990). Synthesis of optically active 1-(2-furyl)-3-pentanol. A simple route to (2S,5R/S)-chalcogran. Collection of Czechoslovak Chemical Communications, 55, 1234–1242. DOI: 10.1135/cccc19901234. http://dx.doi.org/10.1135/cccc1990123410.1135/cccc19901234Suche in Google Scholar

[11] Mori, K., Sasaki, M., Tamada, S., Suguro, T., & Masuda, S. (1979). Synthesis of optically active 2-ethyl-1,6-dioxaspiro [4.4]nonane (chalcogran), the principal aggregation pheromone of Pityogenes chalcographus (L.). Tetrahedron, 35, 1601–1605. DOI: 10.1016/0040-4020(79)80022-8. http://dx.doi.org/10.1016/0040-4020(79)80022-810.1016/0040-4020(79)80022-8Suche in Google Scholar

[12] Redlich, H., & Francke, W. (1980). Optically active chalcogran (2-ethyl-1,6-dioxaspiro[4.4]nonane). Angewandte Chemie International Edition in English, 19, 630–631. DOI: 10.1002/anie.198006301. http://dx.doi.org/10.1002/anie.19800630110.1002/anie.198006301Suche in Google Scholar

[13] Redlich, H. (1982). Chirale Bausteine aus Kohlenhydraten, VI. Synthese von (2R,5RS)- und (2S,5RS)-2-Ethyl-1,6-dioxaspiro-[4.4]nonan (Chalcogran) aus D-Glucose. Liebigs Annalen der Chemie, 1982, 708–716. DOI: 10.1002/jlac.198219820410. http://dx.doi.org/10.1002/jlac.19821982041010.1002/jlac.198219820410Suche in Google Scholar

[14] Schurig, V., & Weber, R. (1984). Use of glass and fused-silica open tubular columns for the separation of structural, configurational and optical isomers by selective complexation gas chromatography. Journal of Chromatography A, 289, 321–332. DOI: 10.1016/s0021-9673(00)95097-0. http://dx.doi.org/10.1016/S0021-9673(00)95097-010.1016/S0021-9673(00)95097-0Suche in Google Scholar

[15] Smith, L. R., Williams, H. J., & Silverstein, R. M. (1978). Facile synthesis of optically active 2-ethyl-1,6-dioxaspiro[4,4]nonane, component of the aggregation pheromone of the beetle Pityogenes chalcographus (L.). Tetrahedron Letters, 19, 3231–3232. DOI: 10.1016/s0040-4039(01)85601-x. http://dx.doi.org/10.1016/S0040-4039(01)85601-X10.1016/S0040-4039(01)85601-XSuche in Google Scholar

[16] Trapp, O., & Schurig, V. (2001). Determination of interconversion barriers by dynamic gas chromatography: Epimerization of chalcogran. Chemistry — A European Journal, 7, 1495–1502. DOI: 10.1002/1521-3765(20010401)7:7〈1495::AIDCHEM1495〉3.0.CO;2-M. http://dx.doi.org/10.1002/1521-3765(20010401)7:7<1495::AID-CHEM1495>3.0.CO;2-M10.1002/1521-3765(20010401)7:7<1495::AID-CHEM1495>3.0.CO;2-MSuche in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Heruntergeladen am 5.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0523-5/html?lang=de
Button zum nach oben scrollen