Abstract
Phase pure nano nickel oxide was synthesized by the chemical precipitation method and sintered at 200°C, 400°C and 600°C, respectively, to study the effect of sintering on the charge distribution and magnetism. The samples were analyzed by X-ray diffraction for electron density distribution studies, vibrating sample magnetometry for magnetic behavior and by UV-VIS spectrophotometry for optical characteristics. Rearrangement of charge density distribution with respect to sintering temperature was analyzed through the maximum entropy method employed using powder X-ray diffraction data. The observed magnetic transition with respect to the temperature/size effect was analyzed and correlated with electron density distribution studies.
[1] Bahadur, J., Sen, D., Mazumder, S., & Ramanathan, S. (2008). Effect of heat treatment on pore structure in nanocrystalline NiO: A small angle neutron scattering study. Journal of Solid State Chemistry, 181, 1227–1235. DOI: 10.1016/j.jssc.2008.01.050. http://dx.doi.org/10.1016/j.jssc.2008.01.05010.1016/j.jssc.2008.01.050Search in Google Scholar
[2] Collins, D. M. (1982). Electron density images from imperfect data by iterative entropy maximization. Nature, 298, 49–51. DOI: 10.1038/298049a0. http://dx.doi.org/10.1038/298049a010.1038/298049a0Search in Google Scholar
[3] Chakrabarty, S., & Chatterjee, K. (2009). Synthesis and characterization of nano-dimensional nickelous oxide (NiO) semiconductor. Journal of Physical Sciences, 13, 245–250. Search in Google Scholar
[4] Choudhury, S., Bhuiyan, M. A., & Hoque, S. K. (2012). Effect of sintering temperature on apparent density and transport properties of NiFe2O4: Synthesized from nanosize powder of NiO and Fe2O3. International Nano Letters, 2, 6. DOI: 10.1186/2228-5326-2-6. http://dx.doi.org/10.1186/2228-5326-2-610.1186/2228-5326-2-6Search in Google Scholar
[5] Davar, F., Fereshteh, Z., & Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. Journal of Alloys and Compounds, 476, 797–801. DOI: 10.1016/j.jallcom.2008.09.121. http://dx.doi.org/10.1016/j.jallcom.2008.09.12110.1016/j.jallcom.2008.09.121Search in Google Scholar
[6] Guo, W., Hui, K. N., & Hui, K. S. (2013). High conductivity nickel oxide thin films by a facile sol-gel method. Materials Letters, 92, 291–295. DOI: 10.1016/j.matlet.2012.10.109. http://dx.doi.org/10.1016/j.matlet.2012.10.10910.1016/j.matlet.2012.10.109Search in Google Scholar
[7] Granqvist, C. G. (1995). Handbook of inorganic electrochromic materials. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar
[8] Hardcastle, F. D., & Wachs, I. E. (1991). Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 95, 5031–5041. DOI: 10.1021/j100166a025. http://dx.doi.org/10.1021/j100166a02510.1021/j100166a025Search in Google Scholar
[9] Hotovy, I., Huran, J., Spiess, L., Romanus, H., Buc, D., & Kosiba, R. (2006). NiO-based nanostructured thin films with Pt surface modification for gas detection. Thin Solid Films, 515, 658–661. DOI: 10.1016/j.tsf.2005.12.232. http://dx.doi.org/10.1016/j.tsf.2005.12.23210.1016/j.tsf.2005.12.232Search in Google Scholar
[10] Justin, P., Meher, S. K., & Rao, G. R. (2010). Tuning of capacitance behavior of NiO using anionic, cationic and nonionic surfactants by hydrothermal synthesis. The Journal of Physical Chemistry C, 114, 5203–5210. DOI: 10.1021/jp9097155. http://dx.doi.org/10.1021/jp909715510.1021/jp9097155Search in Google Scholar
[11] Kodama, R. H., Makhlouf, S. A., & Berkowitz, A. E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Physical Review Letters, 79, 1393–1396. DOI: 10.1103/physrevlett.79.1393. http://dx.doi.org/10.1103/PhysRevLett.79.139310.1103/PhysRevLett.79.1393Search in Google Scholar
[12] Li, Q., Wang, L. S., Hu, B. Y., Yang, C., Zhou, L., & Zhang, L. (2007). Preparation and characterization of NiO nanoparticles through calcination of malate gel. Materials Letters, 61, 1615–1618. DOI: 10.1016/j.matlet.2006.07.113. http://dx.doi.org/10.1016/j.matlet.2006.07.11310.1016/j.matlet.2006.07.113Search in Google Scholar
[13] Mahaleh, Y. B. M., Sadrnezhaad, S. K., & Hosseini, D. (2008). NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. Journal of Nanomaterials, 2008, 470595. DOI: 10.1155/2008/470595. 10.1155/2008/470595Search in Google Scholar
[14] Manikandan, A., Vijaya, J. J., & Kennedy, L. J. (2013). Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E: Low-Dimensional Systems and Nanostructures, 49, 117–123. DOI: 10.1016/j.physe.2013.02.013. http://dx.doi.org/10.1016/j.physe.2013.02.01310.1016/j.physe.2013.02.013Search in Google Scholar
[15] McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 32, 36–50. DOI: 10.1107/s0021889898009856. http://dx.doi.org/10.1107/S002188989800985610.1107/S0021889898009856Search in Google Scholar
[16] Min, K. C., Kim, M., You, Y. H., Lee, S. S., Lee, Y. K., Chung, T. M., Kim, C. G., Hwang, J. H., An, K. S., Lee, N. S., & Kim, Y. (2007). NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena. Surface and Coatings Technology, 201, 9252–9255. DOI: 10.1016/j.surfcoat.2007.04.120. http://dx.doi.org/10.1016/j.surfcoat.2007.04.12010.1016/j.surfcoat.2007.04.120Search in Google Scholar
[17] Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276. DOI: 10.1107/s0021889811038970. http://dx.doi.org/10.1107/S002188981103897010.1107/S0021889811038970Search in Google Scholar
[18] Nathan, T., Aziz, A., Noor, A. F., & Prabaharan, S. R. S. (2008). Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. Journal of Solid State Electrochemistry, 12, 1003–1009. DOI: 10.1007/s10008-007-0465-3. http://dx.doi.org/10.1007/s10008-007-0465-310.1007/s10008-007-0465-3Search in Google Scholar
[19] Needham, S. A., Wang, G. X., & Liu, H. K. (2006). Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 159, 254–257. DOI: 10.1016/j.jpowsour.2006.04.025. http://dx.doi.org/10.1016/j.jpowsour.2006.04.02510.1016/j.jpowsour.2006.04.025Search in Google Scholar
[20] Ni, X., Zhang, Y., Tian, D., Zheng, H., & Wang, X. (2007). Synthesis and characterization of hierarchical NiO nanoflowers with porous structure. Journal of Crystal Growth, 306, 418–421. DOI: 10.1016/j.jcrysgro.2007.05.013. http://dx.doi.org/10.1016/j.jcrysgro.2007.05.01310.1016/j.jcrysgro.2007.05.013Search in Google Scholar
[21] Nėel, L. (1962). In C. DeWitt, B. Dreyfus, P. D. de Gennes (Eds.) Low temperature physics. (pp. 413). New York, NY, USA: Gordon and Beach. Search in Google Scholar
[22] Pancove, J. I. (1971). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice Hall. Search in Google Scholar
[23] Peng, T. C., Xiao, X. H., Hand, X. Y., Zhou, X. D., Wu, W., Ren, F., & Jiang, C. Z. (2011). Characterization of DC reactive magnetron sputtered NiO films using spectroscopic ellipsometry. Applied Surface Science, 257, 5908–5912. DOI: 10.1016/j.apsusc.2011.01.138. http://dx.doi.org/10.1016/j.apsusc.2011.01.13810.1016/j.apsusc.2011.01.138Search in Google Scholar
[24] Petříček, V., Dušek, M., & Palatinus, L. (2006). JANA 2006, the crystallographic computing system. Praha, Czech Republic: Academy of Sciences of the Czech Republic. Search in Google Scholar
[25] Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558. http://dx.doi.org/10.1107/S002188986900655810.1107/S0021889869006558Search in Google Scholar
[26] Salavati-Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M., & Yavarinia, N. (2009). Preparation of NiO nanoparticles from metal-organic frameworks via a solidstate decomposition route. Inorganica Chimica Acta, 362, 3691–3697. DOI: 10.1016/j.ica.2009.04.025. http://dx.doi.org/10.1016/j.ica.2009.04.02510.1016/j.ica.2009.04.025Search in Google Scholar
[27] Saravanan, R., Francis, S., & Berchmans, J. L. (2012). Doping level of Mn in high temperature grown Zn1−xMnxO studied through electronic charge distribution, magnetization and local structure. Chemical Papers, 66, 226–234. DOI: 10.2478/s11696-011-0129-8. http://dx.doi.org/10.2478/s11696-011-0129-810.2478/s11696-011-0129-8Search in Google Scholar
[28] Scherrer, P. (1918). Bestimmung der Gröse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 98–100. (in German) Search in Google Scholar
[29] Smart, J. S., & Greenwald, S. (1951). Crystal structure transitions in antiferromagnetic compounds at the Curie temperature. Physical Review, 82, 113–114. DOI: 10.1103/physrev.82.113. http://dx.doi.org/10.1103/PhysRev.82.11310.1103/PhysRev.82.113Search in Google Scholar
[30] Tadić, M., Panjan, M., Marković, D., Milošević, I., & Spasojević, V. (2011). Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix. Journal of Alloys and Compounds, 509, 7134–7138. DOI: 10.1016/j.jallcom.2011.04.032. http://dx.doi.org/10.1016/j.jallcom.2011.04.03210.1016/j.jallcom.2011.04.032Search in Google Scholar
[31] Takata, M. (2008). The MEM/Rietveld method with nanoapplications — accurate charge-density studies of nanostructured materials by synchrotron-radiation powder diffraction. Acta Crystallographica Section A, 64, 232–245. DOI: 10.1107/s010876730706521x. http://dx.doi.org/10.1107/S160053680706687110.1107/S010876730706521XSearch in Google Scholar
[32] Thota, S., & Kumar, J. (2007). Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles. Journal of Physics and Chemistry of Solids, 68, 1951–1964. DOI: 10.1016/j.jpcs.2007.06.010. http://dx.doi.org/10.1016/j.jpcs.2007.06.01010.1016/j.jpcs.2007.06.010Search in Google Scholar
[33] Vaidya, S., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2009). Synthesis of homogeneous NiO/SiO2 core-shell nanostructures and the effect of shell thickness on the magnetic properties. Crystal Growth & Design, 9, 1666–1670. DOI: 10.1021/cg800881p. http://dx.doi.org/10.1021/cg800881p10.1021/cg800881pSearch in Google Scholar
[34] Verma, V., & Katiyar, M. (2013). Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films, 527, 369–376. DOI: 10.1016/j.tsf.2012.12.020. http://dx.doi.org/10.1016/j.tsf.2012.12.02010.1016/j.tsf.2012.12.020Search in Google Scholar
[35] Wang, W. Z., Liu, Y. K., Xu, C. K., Zheng, C. L., & Wang, G. H. (2002). Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chemical Physics Letters, 362, 119–122. DOI: 10.1016/s0009-2614(02)00996-x. http://dx.doi.org/10.1016/S0009-2614(02)00996-X10.1016/S0009-2614(02)00996-XSearch in Google Scholar
[36] Wang, W. N., Itoh, Y., Lenggoro, I. W., & Okuyama, K. (2004). Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering: B, 111, 69–76. DOI: 10.1016/j.mseb.2004.03.024. http://dx.doi.org/10.1016/j.mseb.2004.03.02410.1016/j.mseb.2004.03.024Search in Google Scholar
[37] Winkler, E., Zysler, R. D., Mansilla, M. V., & Fiorani, D. (2005). Surface anisotropy effects in NiO nanoparticles. Physical Review B, 72, 132409. DOI: 10.1103/physrevb.72.132409. http://dx.doi.org/10.1103/PhysRevB.72.13240910.1103/PhysRevB.72.132409Search in Google Scholar
[38] Wu, Y., He, Y. M., Wu, T. H., Chen, T., Weng, W. Z., & Wan, H. L. (2007). Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method. Materials Letters, 61, 3174–3178. DOI: 10.1016/j.matlet.2006.11.018. http://dx.doi.org/10.1016/j.matlet.2006.11.01810.1016/j.matlet.2006.11.018Search in Google Scholar
[39] Xin, X. S., Lü, Z., Zhou, B. B., Huang, X. Q., Zhu, R. B., Sha, X. Q., Zhang, Y. H., & Su, W. H. (2007). Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO. Journal of Alloys and Compounds, 427, 251–255. DOI: 10.1016/j.jallcom.2006.02.064. http://dx.doi.org/10.1016/j.jallcom.2006.02.06410.1016/j.jallcom.2006.02.064Search in Google Scholar
[40] Yang, H. M., Tao, Q. F., Zhang, X. C., Tang, A. D., & Ouyang, J. (2008). Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. Journal of Alloys Compounds, 459, 98–102. DOI: 10.1016/j.jallcom.2007.04.258. http://dx.doi.org/10.1016/j.jallcom.2007.04.25810.1016/j.jallcom.2007.04.258Search in Google Scholar
[41] Zheng, Y. Z., & Zhang, M. L. (2007). Preparation and electrochemical properties of nickel oxide by molton-salt synthesis. Materials Letters, 61, 3967–3969. DOI: 10.1016/j.matlet.2006.12.072. http://dx.doi.org/10.1016/j.matlet.2006.12.07210.1016/j.matlet.2006.12.072Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy