Home Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
Article
Licensed
Unlicensed Requires Authentication

Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO

  • Subramanian Saravanakumar EMAIL logo , Ramachandran Saravanan and Subramanian Sasikumar
Published/Copyright: February 9, 2014
Become an author with De Gruyter Brill

Abstract

Phase pure nano nickel oxide was synthesized by the chemical precipitation method and sintered at 200°C, 400°C and 600°C, respectively, to study the effect of sintering on the charge distribution and magnetism. The samples were analyzed by X-ray diffraction for electron density distribution studies, vibrating sample magnetometry for magnetic behavior and by UV-VIS spectrophotometry for optical characteristics. Rearrangement of charge density distribution with respect to sintering temperature was analyzed through the maximum entropy method employed using powder X-ray diffraction data. The observed magnetic transition with respect to the temperature/size effect was analyzed and correlated with electron density distribution studies.

[1] Bahadur, J., Sen, D., Mazumder, S., & Ramanathan, S. (2008). Effect of heat treatment on pore structure in nanocrystalline NiO: A small angle neutron scattering study. Journal of Solid State Chemistry, 181, 1227–1235. DOI: 10.1016/j.jssc.2008.01.050. http://dx.doi.org/10.1016/j.jssc.2008.01.05010.1016/j.jssc.2008.01.050Search in Google Scholar

[2] Collins, D. M. (1982). Electron density images from imperfect data by iterative entropy maximization. Nature, 298, 49–51. DOI: 10.1038/298049a0. http://dx.doi.org/10.1038/298049a010.1038/298049a0Search in Google Scholar

[3] Chakrabarty, S., & Chatterjee, K. (2009). Synthesis and characterization of nano-dimensional nickelous oxide (NiO) semiconductor. Journal of Physical Sciences, 13, 245–250. Search in Google Scholar

[4] Choudhury, S., Bhuiyan, M. A., & Hoque, S. K. (2012). Effect of sintering temperature on apparent density and transport properties of NiFe2O4: Synthesized from nanosize powder of NiO and Fe2O3. International Nano Letters, 2, 6. DOI: 10.1186/2228-5326-2-6. http://dx.doi.org/10.1186/2228-5326-2-610.1186/2228-5326-2-6Search in Google Scholar

[5] Davar, F., Fereshteh, Z., & Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. Journal of Alloys and Compounds, 476, 797–801. DOI: 10.1016/j.jallcom.2008.09.121. http://dx.doi.org/10.1016/j.jallcom.2008.09.12110.1016/j.jallcom.2008.09.121Search in Google Scholar

[6] Guo, W., Hui, K. N., & Hui, K. S. (2013). High conductivity nickel oxide thin films by a facile sol-gel method. Materials Letters, 92, 291–295. DOI: 10.1016/j.matlet.2012.10.109. http://dx.doi.org/10.1016/j.matlet.2012.10.10910.1016/j.matlet.2012.10.109Search in Google Scholar

[7] Granqvist, C. G. (1995). Handbook of inorganic electrochromic materials. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[8] Hardcastle, F. D., & Wachs, I. E. (1991). Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 95, 5031–5041. DOI: 10.1021/j100166a025. http://dx.doi.org/10.1021/j100166a02510.1021/j100166a025Search in Google Scholar

[9] Hotovy, I., Huran, J., Spiess, L., Romanus, H., Buc, D., & Kosiba, R. (2006). NiO-based nanostructured thin films with Pt surface modification for gas detection. Thin Solid Films, 515, 658–661. DOI: 10.1016/j.tsf.2005.12.232. http://dx.doi.org/10.1016/j.tsf.2005.12.23210.1016/j.tsf.2005.12.232Search in Google Scholar

[10] Justin, P., Meher, S. K., & Rao, G. R. (2010). Tuning of capacitance behavior of NiO using anionic, cationic and nonionic surfactants by hydrothermal synthesis. The Journal of Physical Chemistry C, 114, 5203–5210. DOI: 10.1021/jp9097155. http://dx.doi.org/10.1021/jp909715510.1021/jp9097155Search in Google Scholar

[11] Kodama, R. H., Makhlouf, S. A., & Berkowitz, A. E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Physical Review Letters, 79, 1393–1396. DOI: 10.1103/physrevlett.79.1393. http://dx.doi.org/10.1103/PhysRevLett.79.139310.1103/PhysRevLett.79.1393Search in Google Scholar

[12] Li, Q., Wang, L. S., Hu, B. Y., Yang, C., Zhou, L., & Zhang, L. (2007). Preparation and characterization of NiO nanoparticles through calcination of malate gel. Materials Letters, 61, 1615–1618. DOI: 10.1016/j.matlet.2006.07.113. http://dx.doi.org/10.1016/j.matlet.2006.07.11310.1016/j.matlet.2006.07.113Search in Google Scholar

[13] Mahaleh, Y. B. M., Sadrnezhaad, S. K., & Hosseini, D. (2008). NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. Journal of Nanomaterials, 2008, 470595. DOI: 10.1155/2008/470595. 10.1155/2008/470595Search in Google Scholar

[14] Manikandan, A., Vijaya, J. J., & Kennedy, L. J. (2013). Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E: Low-Dimensional Systems and Nanostructures, 49, 117–123. DOI: 10.1016/j.physe.2013.02.013. http://dx.doi.org/10.1016/j.physe.2013.02.01310.1016/j.physe.2013.02.013Search in Google Scholar

[15] McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 32, 36–50. DOI: 10.1107/s0021889898009856. http://dx.doi.org/10.1107/S002188989800985610.1107/S0021889898009856Search in Google Scholar

[16] Min, K. C., Kim, M., You, Y. H., Lee, S. S., Lee, Y. K., Chung, T. M., Kim, C. G., Hwang, J. H., An, K. S., Lee, N. S., & Kim, Y. (2007). NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena. Surface and Coatings Technology, 201, 9252–9255. DOI: 10.1016/j.surfcoat.2007.04.120. http://dx.doi.org/10.1016/j.surfcoat.2007.04.12010.1016/j.surfcoat.2007.04.120Search in Google Scholar

[17] Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276. DOI: 10.1107/s0021889811038970. http://dx.doi.org/10.1107/S002188981103897010.1107/S0021889811038970Search in Google Scholar

[18] Nathan, T., Aziz, A., Noor, A. F., & Prabaharan, S. R. S. (2008). Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. Journal of Solid State Electrochemistry, 12, 1003–1009. DOI: 10.1007/s10008-007-0465-3. http://dx.doi.org/10.1007/s10008-007-0465-310.1007/s10008-007-0465-3Search in Google Scholar

[19] Needham, S. A., Wang, G. X., & Liu, H. K. (2006). Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 159, 254–257. DOI: 10.1016/j.jpowsour.2006.04.025. http://dx.doi.org/10.1016/j.jpowsour.2006.04.02510.1016/j.jpowsour.2006.04.025Search in Google Scholar

[20] Ni, X., Zhang, Y., Tian, D., Zheng, H., & Wang, X. (2007). Synthesis and characterization of hierarchical NiO nanoflowers with porous structure. Journal of Crystal Growth, 306, 418–421. DOI: 10.1016/j.jcrysgro.2007.05.013. http://dx.doi.org/10.1016/j.jcrysgro.2007.05.01310.1016/j.jcrysgro.2007.05.013Search in Google Scholar

[21] Nėel, L. (1962). In C. DeWitt, B. Dreyfus, P. D. de Gennes (Eds.) Low temperature physics. (pp. 413). New York, NY, USA: Gordon and Beach. Search in Google Scholar

[22] Pancove, J. I. (1971). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice Hall. Search in Google Scholar

[23] Peng, T. C., Xiao, X. H., Hand, X. Y., Zhou, X. D., Wu, W., Ren, F., & Jiang, C. Z. (2011). Characterization of DC reactive magnetron sputtered NiO films using spectroscopic ellipsometry. Applied Surface Science, 257, 5908–5912. DOI: 10.1016/j.apsusc.2011.01.138. http://dx.doi.org/10.1016/j.apsusc.2011.01.13810.1016/j.apsusc.2011.01.138Search in Google Scholar

[24] Petříček, V., Dušek, M., & Palatinus, L. (2006). JANA 2006, the crystallographic computing system. Praha, Czech Republic: Academy of Sciences of the Czech Republic. Search in Google Scholar

[25] Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558. http://dx.doi.org/10.1107/S002188986900655810.1107/S0021889869006558Search in Google Scholar

[26] Salavati-Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M., & Yavarinia, N. (2009). Preparation of NiO nanoparticles from metal-organic frameworks via a solidstate decomposition route. Inorganica Chimica Acta, 362, 3691–3697. DOI: 10.1016/j.ica.2009.04.025. http://dx.doi.org/10.1016/j.ica.2009.04.02510.1016/j.ica.2009.04.025Search in Google Scholar

[27] Saravanan, R., Francis, S., & Berchmans, J. L. (2012). Doping level of Mn in high temperature grown Zn1−xMnxO studied through electronic charge distribution, magnetization and local structure. Chemical Papers, 66, 226–234. DOI: 10.2478/s11696-011-0129-8. http://dx.doi.org/10.2478/s11696-011-0129-810.2478/s11696-011-0129-8Search in Google Scholar

[28] Scherrer, P. (1918). Bestimmung der Gröse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 98–100. (in German) Search in Google Scholar

[29] Smart, J. S., & Greenwald, S. (1951). Crystal structure transitions in antiferromagnetic compounds at the Curie temperature. Physical Review, 82, 113–114. DOI: 10.1103/physrev.82.113. http://dx.doi.org/10.1103/PhysRev.82.11310.1103/PhysRev.82.113Search in Google Scholar

[30] Tadić, M., Panjan, M., Marković, D., Milošević, I., & Spasojević, V. (2011). Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix. Journal of Alloys and Compounds, 509, 7134–7138. DOI: 10.1016/j.jallcom.2011.04.032. http://dx.doi.org/10.1016/j.jallcom.2011.04.03210.1016/j.jallcom.2011.04.032Search in Google Scholar

[31] Takata, M. (2008). The MEM/Rietveld method with nanoapplications — accurate charge-density studies of nanostructured materials by synchrotron-radiation powder diffraction. Acta Crystallographica Section A, 64, 232–245. DOI: 10.1107/s010876730706521x. http://dx.doi.org/10.1107/S160053680706687110.1107/S010876730706521XSearch in Google Scholar

[32] Thota, S., & Kumar, J. (2007). Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles. Journal of Physics and Chemistry of Solids, 68, 1951–1964. DOI: 10.1016/j.jpcs.2007.06.010. http://dx.doi.org/10.1016/j.jpcs.2007.06.01010.1016/j.jpcs.2007.06.010Search in Google Scholar

[33] Vaidya, S., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2009). Synthesis of homogeneous NiO/SiO2 core-shell nanostructures and the effect of shell thickness on the magnetic properties. Crystal Growth & Design, 9, 1666–1670. DOI: 10.1021/cg800881p. http://dx.doi.org/10.1021/cg800881p10.1021/cg800881pSearch in Google Scholar

[34] Verma, V., & Katiyar, M. (2013). Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films, 527, 369–376. DOI: 10.1016/j.tsf.2012.12.020. http://dx.doi.org/10.1016/j.tsf.2012.12.02010.1016/j.tsf.2012.12.020Search in Google Scholar

[35] Wang, W. Z., Liu, Y. K., Xu, C. K., Zheng, C. L., & Wang, G. H. (2002). Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chemical Physics Letters, 362, 119–122. DOI: 10.1016/s0009-2614(02)00996-x. http://dx.doi.org/10.1016/S0009-2614(02)00996-X10.1016/S0009-2614(02)00996-XSearch in Google Scholar

[36] Wang, W. N., Itoh, Y., Lenggoro, I. W., & Okuyama, K. (2004). Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering: B, 111, 69–76. DOI: 10.1016/j.mseb.2004.03.024. http://dx.doi.org/10.1016/j.mseb.2004.03.02410.1016/j.mseb.2004.03.024Search in Google Scholar

[37] Winkler, E., Zysler, R. D., Mansilla, M. V., & Fiorani, D. (2005). Surface anisotropy effects in NiO nanoparticles. Physical Review B, 72, 132409. DOI: 10.1103/physrevb.72.132409. http://dx.doi.org/10.1103/PhysRevB.72.13240910.1103/PhysRevB.72.132409Search in Google Scholar

[38] Wu, Y., He, Y. M., Wu, T. H., Chen, T., Weng, W. Z., & Wan, H. L. (2007). Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method. Materials Letters, 61, 3174–3178. DOI: 10.1016/j.matlet.2006.11.018. http://dx.doi.org/10.1016/j.matlet.2006.11.01810.1016/j.matlet.2006.11.018Search in Google Scholar

[39] Xin, X. S., Lü, Z., Zhou, B. B., Huang, X. Q., Zhu, R. B., Sha, X. Q., Zhang, Y. H., & Su, W. H. (2007). Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO. Journal of Alloys and Compounds, 427, 251–255. DOI: 10.1016/j.jallcom.2006.02.064. http://dx.doi.org/10.1016/j.jallcom.2006.02.06410.1016/j.jallcom.2006.02.064Search in Google Scholar

[40] Yang, H. M., Tao, Q. F., Zhang, X. C., Tang, A. D., & Ouyang, J. (2008). Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. Journal of Alloys Compounds, 459, 98–102. DOI: 10.1016/j.jallcom.2007.04.258. http://dx.doi.org/10.1016/j.jallcom.2007.04.25810.1016/j.jallcom.2007.04.258Search in Google Scholar

[41] Zheng, Y. Z., & Zhang, M. L. (2007). Preparation and electrochemical properties of nickel oxide by molton-salt synthesis. Materials Letters, 61, 3967–3969. DOI: 10.1016/j.matlet.2006.12.072. http://dx.doi.org/10.1016/j.matlet.2006.12.07210.1016/j.matlet.2006.12.072Search in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0519-1/html
Scroll to top button