Home Life Sciences Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
Article
Licensed
Unlicensed Requires Authentication

Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography

  • Helen Karasali EMAIL logo , Konstantinos Kasiotis and Kyriaki Machera
Published/Copyright: February 9, 2014
Become an author with De Gruyter Brill

Abstract

An isocratic reversed-phase high-performance liquid chromatographic (RP-HPLC) method with diode array detection (DAD) was developed for the determination of aluminium tris(ethyl phosphonate) (fosetyl-aluminium, fosetyl-Al) in plant-protection products. The method involves extraction of the active ingredient by sonication of the sample with water and direct measurement by RPHPLC. The isocratic RP-HPLC method for the analysis of fosetyl-Al thus developed was then validated for specificity, linearity, precision, and accuracy. The chromatographic peak confirmation was performed by LC-MS using electron spray ionisation in the negative-ion mode. The repeatability of the method, expressed as relative standard deviation (RSD, %), was found to be 0.5 % and the limit of detection was 0.035 mg mL−1. The average recoveries of the three fortification levels varied from 96.7 % to 100.6 % and the RSDs ranged between 2.6 % and 6.3 %. The precision of the method was also considered to be acceptable as the experimental repeatability relative standard deviation (RSDr) was lower than the RSDr, calculated using the Horwitz equation. The method is rapid, simple, accurate, cost-effective, and provides a new and reliable means for the analysis of fosetyl-Al in formulated products.

[1] Ali, M. K., Lepoivre, P., & Semal, J. (1993). Scoparone eliciting activity released by phosphonic acid treatment of Phytophora citrophora mycelia mimics the incompatible response of phosphonic acid-treated Citrus leaves inoculated with this fungus. Plant Science, 93, 55–61. DOI: 10.1016/0168-9452(93)90034-w. http://dx.doi.org/10.1016/0168-9452(93)90034-W10.1016/0168-9452(93)90034-WSearch in Google Scholar

[2] Armenta, S., Garrigues, S., & de la Guardia, M. (2007). Partial least squares-near infrared determination of pesticides in commercial formulations. Vibrational Spectroscopy, 44, 273–278. DOI: 10.1016/j.vibspec.2006.12.005. http://dx.doi.org/10.1016/j.vibspec.2006.12.00510.1016/j.vibspec.2006.12.005Search in Google Scholar

[3] Collaborative International Pesticide Analytical Council (2003). Guidelines on method validation to be performed in support of analytical methods for agrochemical formulations. Cambridge, UK: Black Bear Press. Search in Google Scholar

[4] Dobrat, W., & Martinj, A. (1998). Analysis of technical and formulated pesticide. CIPAC Handbook (Vol. 1G). Cambridge, UK: Black Bear Press. Search in Google Scholar

[5] European Food Safety Authority (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance potassium phosphonates. EFSA Journal, 10, 2964. 10.2903/j.efsa.2012.2963Search in Google Scholar

[6] Fan, Z. X., Jia, S. M., Ding, N., Zhao, W. Y., & Wang, S. J. (2009). Determination of fosetyl-aluminium by ion-pair reversed phase liquid chromatography with evaporative light scattering detection. Chinese Journal of Chromatography, 27, 849–851. Search in Google Scholar

[7] Food and Agriculture Organisation of the United Nations (2011). Specifications for plant protection products-fosetylaluminium. Retrieved October 31, 2013, from http://www.fao.org/ag/agp/agpp/pesticid/ Search in Google Scholar

[8] Gangal, N. D., Bondre, S. S., & Ramanathan, P. S. (2000). Determination of some pesticides and intermediates by ion chromatography. Journal of Chromatography A, 884, 243–249. DOI: 10.1016/s0021-9673(00)00305-8. http://dx.doi.org/10.1016/S0021-9673(00)00305-810.1016/S0021-9673(00)00305-8Search in Google Scholar

[9] Giordano, R., Ciaralli, L., Ciprotti, M., Camoni, I., & Costantini, S. (1995). Applicability of high-performance ion chromatography (HPIC) to the determination of fosetyl-aluminum in commercial formulations. Microchemical Journal, 52, 68–76. DOI: 10.1006/mchj.1995.1068. http://dx.doi.org/10.1006/mchj.1995.106810.1006/mchj.1995.1068Search in Google Scholar

[10] González, C. F., Rial-Otero, R., Grande, B. C., & Simal-Gándara, J. (2003). Determination of fungicide residues in white grapes for winemaking by gas chromatography with mass spectrometric detection and assessment of matrix effects. Journal of AOAC International, 86, 1008–1014. 10.1093/jaoac/86.5.1008Search in Google Scholar

[11] Hernández, F., Sancho, J. V., Pozo, Ó. J., Villaplana, C., Ibáñez, M., & Grimalt, S. (2003). Rapid determination of fosetyl-aluminum residues in lettuce by liquid chromatography/electrospray tandem mass spectrometry. Journal of AOAC International, 86, 832–838. 10.1093/jaoac/86.4.832Search in Google Scholar

[12] Hooijschuur, E. W. J., Kientz, C. E., Dijksman, J., & Brinkman, U. A. T. (2001). Potential of microcolumn liquid chromatography and capillary electrophoresis with flame photometric detection for determination of polar phosphorus-containing pesticides. Chromatographia, 54, 295–301. DOI: 10.1007/bf02492673. http://dx.doi.org/10.1007/BF0249267310.1007/BF02492673Search in Google Scholar

[13] Horwitz, W. (1988). Protocol for the design, conduct and interpretation of collaborative studies. Pure and Applied Chemistry, 60, 855–864. DOI: 10.1351/pac198860060855. http://dx.doi.org/10.1351/pac19886006085510.1351/pac198860060855Search in Google Scholar

[14] Horwitz, W. (1995). Protocol for the design, conduct and interpretation of method-performance studies. Pure and Applied Chemistry, 67, 331–343. DOI: 10.1351/pac199567020331. http://dx.doi.org/10.1351/pac19956702033110.1351/pac199567020331Search in Google Scholar

[15] Jalalizadeh, H., Souri, E., Farsam, H., & Ansari, M. (2003). A high-performance liquid chromatographic assay for the determination of losartan in plasma. Iranian Journal of Pharmacology and Therapeutics, 2, 18–21. Search in Google Scholar

[16] López Serrano, M., Ferrer, M. A., Calderón, A. A., Muñoz, R., Ros Barceló, A., & Pedreño, M. A. (1994). Aluminumaediated fosetyl-Al effects on peroxidase secreted from grapevine cells. Environmental and Experimental Botany, 34, 329–336. DOI: 10.1016/0098-8472(94)90054-x. http://dx.doi.org/10.1016/0098-8472(94)90054-X10.1016/0098-8472(94)90054-XSearch in Google Scholar

[17] Mertz, J. L., Lau, D. Y., & Borth, D. M. (2006). Liquid chromatographic determination of maleic hydrazide in technical and formulated products: Collaborative study. Journal of AOAC International, 89, 929–936. 10.1093/jaoac/89.4.929Search in Google Scholar

[18] Meyer, V. R. (1997). Pitfalls and errors of HPLC in pictures. Heidelberg, Germany: Hüthig Verlag. Search in Google Scholar

[19] Moros, J., Armenta, S., Garrigues, S., & de la Guardia, M. (2006). Univariate near infrared methods for determination of pesticides in agrochemicals. Analytica Chimica Acta, 579, 17–24. DOI: 10.1016/j.aca.2006.07.009. http://dx.doi.org/10.1016/j.aca.2006.07.00910.1016/j.aca.2006.07.009Search in Google Scholar

[20] Nowack, B. (2003). Environmental chemistry of phosphonates. Water Research, 37, 2533–2546. DOI: 10.1016/s0043-1354(03)00079-4. http://dx.doi.org/10.1016/S0043-1354(03)00079-410.1016/S0043-1354(03)00079-4Search in Google Scholar

[21] Ouimette, D. G., & Coffey, M. D. (1989). Phosphonate levels in avocado (Persea americana) seedlings and soil following treatment with fosetyl-Al or potassium phosphonate. Plant Disease, 73, 212–215. DOI: 10.1094/pd-73-0212. http://dx.doi.org/10.1094/PD-73-021210.1094/PD-73-0212Search in Google Scholar

[22] Pelegri, R., Gamón, M., Coscollá, R., Beltrán, V., & Cuñat, P. (1993). The metabolism of fosetyl-aluminum and the evolution of residue levels in oranges and tangerines. Pesticide Science, 39, 319–323. DOI: 10.1002/ps.2780390412. http://dx.doi.org/10.1002/ps.278039041210.1002/ps.2780390412Search in Google Scholar

[23] Popov, K., Rönkkömäki, H., & Lajunen, L. H. J. (2001). Critical evaluation of stability constants of phosphonic acids (IUPAC technical report). Pure and Applied Chemistry, 73, 1641–1677. DOI: 10.1351/pac200173101641. http://dx.doi.org/10.1351/pac20017310164110.1351/pac200173101641Search in Google Scholar

[24] Pose-Juan, E., Rial-Otero, R., Martínez-Carballo, E., López-Periago, E., & Simal-Gándara, J. (2009). Determination of metalaxyl and identification of adjuvants in wettable powder pesticide technical formulas. Analytical and Bioanalytical Chemistry, 394, 1535–1544. DOI: 10.1007/s00216-009-2633-z. http://dx.doi.org/10.1007/s00216-009-2633-z10.1007/s00216-009-2633-zSearch in Google Scholar

[25] Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2003). Multiresidue method for fourteen fungicides in white grapes by liquid-liquid and solid-phase extraction followed by liquid chromatography-diode array detection. Journal of Chromatography A, 992, 121–131. DOI: 10.1016/s0021-9673(03)00317-0. http://dx.doi.org/10.1016/S0021-9673(03)00317-010.1016/S0021-9673(03)00317-0Search in Google Scholar

[26] Rial-Otero, R., Cancho-Grande, B., Perez-Lamela, C., Simal-Gándara, J., & Arias-Estévez, M. (2006). Simultaneous determination of the herbicides diquat and paraquat in water. Journal of Chromatographic Science, 44, 539–542. DOI: 10.1093/chromsci/44.9.539. http://dx.doi.org/10.1093/chromsci/44.9.53910.1093/chromsci/44.9.539Search in Google Scholar PubMed

[27] Ribani, M., Collins, C. H., & Bottoli, C. B. G. (2007). Validation of chromatographic methods: Evaluation of detection and quantification limits in the determination of impurities in orneprazole. Journal of Chromatography A, 1156, 201–205. DOI: 10.1016/j.chroma.2006.12.080. http://dx.doi.org/10.1016/j.chroma.2006.12.08010.1016/j.chroma.2006.12.080Search in Google Scholar PubMed

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0522-6/html
Scroll to top button