Abstract
In this study, Cu(II)-ion-imprinted membrane adsorbents were prepared via cross-linking of blended chitosan/poly(vinyl alcohol) using glutaraldehyde as cross-linker and copper ions as template. The ability of IIMs to adsorb copper ions from aqueous solutions was assessed using a batch of experiments under different conditions by changing cross-linking density (0.05 mass %, 0.1 mass %, and 0.2 mass %), template content (0.2 mass %, 0.5 mass %, and 0.9 mass %), initial analyte concentration (50 mg L−1, 100 mg L−1, and 150 mg L−1), and adsorbent concentration (0.5 g L−1, 1.0 g L−1, and 2.0 g L−1). The Taguchi method was used to plan a minimum number of experiments. The following optimal levels were thus determined for the four factors: cross-linking density: 0.1 mass %; template content: 0.5 mass %; initial analyte concentration: 150 mg L−1; and adsorbent concentration: 0.3 g L−1.
[1] Beppu, M., Arruda, E. J., Vieira, R. S., & Santos, N. N. (2004). Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science, 240, 227–235. DOI: 10.1016/j.memsci.2004.04.025. http://dx.doi.org/10.1016/j.memsci.2004.04.02510.1016/j.memsci.2004.04.025Suche in Google Scholar
[2] Bogya, E. S., Barabás, R., Csavdári, C., Dejeu, V., & Bâldea, I. (2009). Hydroxyapatite modified with silica used for sorption of copper(II). Chemical Papers, 63, 568–573. DOI: 10.2478/s11696-009-0059-x. http://dx.doi.org/10.2478/s11696-009-0059-x10.2478/s11696-009-0059-xSuche in Google Scholar
[3] Borneman, Z. (2007). Particle loaded membrane chromatography. Ph.D. thesis, University of Twente, Twente: The Netherlands. Suche in Google Scholar
[4] Bulgariu, L., Bulgariu, D., & Macoveanu, M. (2012). Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat. Chemical Papers, 66, 239–247. DOI: 10.2478/s11696-012-0149-z. http://dx.doi.org/10.2478/s11696-012-0149-z10.2478/s11696-012-0149-zSuche in Google Scholar
[5] Cao, J., Tan, Y. B., Che, Y. J., & Xin, H. P. (2010). Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: An effective adsorbent for the removal of heavy metal from aqueous solution. Bioresource Technology, 101, 2558–2561. DOI: 10.1016/j.biortech.2009.10.069. http://dx.doi.org/10.1016/j.biortech.2009.10.06910.1016/j.biortech.2009.10.069Suche in Google Scholar
[6] Chen, A. H., Yang, C. Y., Chen, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068–1075. DOI: 10.1016/j.jhazmat.2008.07.073. http://dx.doi.org/10.1016/j.jhazmat.2008.07.07310.1016/j.jhazmat.2008.07.073Suche in Google Scholar
[7] Chen, J. H., Li, G. P., Liu, Q. L., Ni, J. C., Wu, W. B., & Lin, J. M. (2010). Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chemical Engineering Journal, 165, 465–473. DOI: 10.1016/j.cej.2010.09.034. http://dx.doi.org/10.1016/j.cej.2010.09.03410.1016/j.cej.2010.09.034Suche in Google Scholar
[8] Chen, J. H., Lin, H., Luo, Z. H., He, Y. S., & Li, G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination, 277, 265–273. DOI: 10.1016/j.desal.2011.04.040. http://dx.doi.org/10.1016/j.desal.2011.04.04010.1016/j.desal.2011.04.040Suche in Google Scholar
[9] Ghaee, A., Shariaty-Niassar, M., Barzin, J., & Matsuura, T. (2010). Effects of chitosan membrane morphology on copper ion adsorption. Chemical Engineering Journal, 165, 46–55. DOI: 10.1016/j.cej.2010.08.051. http://dx.doi.org/10.1016/j.cej.2010.08.05110.1016/j.cej.2010.08.051Suche in Google Scholar
[10] Guibal, E. (2004). Interactions of metal ions with chitosanbased sorbents: a review. Separation and Purification Technology, 38, 43–74. DOI: 10.1016/j.seppur.2003.10.004. http://dx.doi.org/10.1016/j.seppur.2003.10.00410.1016/j.seppur.2003.10.004Suche in Google Scholar
[11] Koyano, T., Koshizaki, N., Umehara, H., Nagura, M., & Minoura, N. (2000). Surface states of PVA/chitosan blended hydrogels. Polymer, 41, 4461–4465. DOI: 10.1016/s0032-3861(99)00675-8. http://dx.doi.org/10.1016/S0032-3861(99)00675-810.1016/S0032-3861(99)00675-8Suche in Google Scholar
[12] Lépinay, S., Kham, K., Millot, M. C., & Carbonnier, B. (2012). In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010-2011. Chemical Papers, 66, 340–351. DOI: 10.2478/s11696-012-0134-6. http://dx.doi.org/10.2478/s11696-012-0134-610.2478/s11696-012-0134-6Suche in Google Scholar
[13] Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42, 237–247. DOI: 10.1016/j.seppur.2004.08.002. http://dx.doi.org/10.1016/j.seppur.2004.08.00210.1016/j.seppur.2004.08.002Suche in Google Scholar
[14] Lufting, J. T., & Jordan, V. S. (1998). Design of experiments in quality engineering. New York, NY, USA: McGraw-Hill. Suche in Google Scholar
[15] Mohammadi, T., & Safavi, M. A. (2009). Application of Taguchi method in optimization of desalination by vacuum membrane distillation. Desalination, 249, 83–89. DOI: 10.1016/j.desal.2009.01.017. http://dx.doi.org/10.1016/j.desal.2009.01.01710.1016/j.desal.2009.01.017Suche in Google Scholar
[16] Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3. http://dx.doi.org/10.2478/s11696-013-0310-310.2478/s11696-013-0310-3Suche in Google Scholar
[17] Shawky, H. A. (2009). Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). Journal of Applied Polymer Science, 114, 2608–2615. DOI: 10.1002/app.30816. http://dx.doi.org/10.1002/app.3081610.1002/app.30816Suche in Google Scholar
[18] Tasselli, F., Donato, L., & Drioli, E. (2008). Evaluation of molecularly imprinted membranes based on different acrylic copolymers. Journal of Membrane Science, 320, 167–172. DOI: 10.1016/j.memsci.2008.03.071. http://dx.doi.org/10.1016/j.memsci.2008.03.07110.1016/j.memsci.2008.03.071Suche in Google Scholar
[19] Tofighy, M. A., Shirazi, Y., Mohammadi, T., & Pak, A. (2011). Salty water desalination using carbon nanotubes membrane. Chemical Engineering Journal, 168, 1064–1072. DOI: 10.1016/j.cej.2011.01.086. http://dx.doi.org/10.1016/j.cej.2011.01.08610.1016/j.cej.2011.01.086Suche in Google Scholar
[20] Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, 77–93. DOI: 10.1016/j.carbpol.2003.08.005. http://dx.doi.org/10.1016/j.carbpol.2003.08.00510.1016/j.carbpol.2003.08.005Suche in Google Scholar
[21] Vatanpour, V., Madaeni, S. S., Zinadini, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42. DOI: 10.1016/j.memsci.2011.02.030. http://dx.doi.org/10.1016/j.memsci.2011.02.03010.1016/j.memsci.2011.02.030Suche in Google Scholar
[22] Vieira, R. S., & Beppu, M. M. (2006). Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279, 196–207. DOI: 10.1016/j.colsurfa.2006.01.026. http://dx.doi.org/10.1016/j.colsurfa.2006.01.02610.1016/j.colsurfa.2006.01.026Suche in Google Scholar
[23] Vold, I. M. N., Vårum, K. M., Guibal, E., & Smidsrød, O. (2003). Binding of ions to chitosan-selectivity studies. Carbohydrate Polymers, 54, 471–477. DOI: 10.1016/j.carbpol.2003.07.001. http://dx.doi.org/10.1016/j.carbpol.2003.07.00110.1016/j.carbpol.2003.07.001Suche in Google Scholar
[24] Wan Ngah, W. S., Kamari, A., & Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34, 155–161. DOI: 10.1016/j.ijbiomac.2004.03.001. http://dx.doi.org/10.1016/j.ijbiomac.2004.03.00110.1016/j.ijbiomac.2004.03.001Suche in Google Scholar PubMed
[25] Wan Ngah, W. S., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143, 62–72. DOI: 10.1016/j.cej.2007.12.006. http://dx.doi.org/10.1016/j.cej.2007.12.00610.1016/j.cej.2007.12.006Suche in Google Scholar
[26] Wang, X. J., Xu, Z. L., Bing, N. C., & Yang, Z. G. (2008). Preparation and characterization of metal-complex imprinted PVDF hollow fiber membranes. Journal of Applied Polymer Science, 109, 64–73. DOI: 10.1002/app.26805. http://dx.doi.org/10.1002/app.2680510.1002/app.26805Suche in Google Scholar
[27] Wang, X. W., Zhang, L., Ma, C. L., Song, R. Y., Hou, H. B., & Li, D. L. (2009). Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy, 100, 82–86. DOI: 10.1016/j.hydromet.2009.10.006. http://dx.doi.org/10.1016/j.hydromet.2009.10.00610.1016/j.hydromet.2009.10.006Suche in Google Scholar
[28] Wang, Z. Q., Wang, M., Wu, G. H., Shen, Y. Y., & He, C. Y. (2010). Ion imprinted sol-gel nanotubes membrane for selective separation of copper ion from aqueous solution. Microchimica Acta, 169, 195–200. DOI: 10.1007/s00604-010-0332-2. http://dx.doi.org/10.1007/s00604-010-0418-x10.1007/s00604-010-0332-2Suche in Google Scholar
[29] Yan, M., & Ramström, O. (2005). Molecularly imprinted materials: Science and technology. New York, NY, USA: Marcel Dekker. Suche in Google Scholar
[30] Zhai, Y. H., Liu, Y. W., Chang, X. J., Ruan, X. F., & Liu, J. L. (2008). Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics. Reactive and Functional Polymers, 68, 284–291. DOI: 10.1016/j.reactfunctpolym.2007.08.013. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.08.01310.1016/j.reactfunctpolym.2007.08.013Suche in Google Scholar
[31] Zhang, L., Yang, S. W., Han, T., Zhong, L. L., Ma, C. L., Zhou, Y. Z., & Han, X. L. (2012). Improvement of Ag(I) adsorption onto chitosan/triethanolamine composite sorbent by an ionimprinted technology. Applied Surface Science, 263, 696–703. DOI: 10.1016/j.apsusc.2012.09.143. http://dx.doi.org/10.1016/j.apsusc.2012.09.14310.1016/j.apsusc.2012.09.143Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Artikel in diesem Heft
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy