Startseite Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique

  • Soheil Zarghami EMAIL logo , Mansoor Kazemimoghadam und Toraj Mohammadi
Veröffentlicht/Copyright: 9. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, Cu(II)-ion-imprinted membrane adsorbents were prepared via cross-linking of blended chitosan/poly(vinyl alcohol) using glutaraldehyde as cross-linker and copper ions as template. The ability of IIMs to adsorb copper ions from aqueous solutions was assessed using a batch of experiments under different conditions by changing cross-linking density (0.05 mass %, 0.1 mass %, and 0.2 mass %), template content (0.2 mass %, 0.5 mass %, and 0.9 mass %), initial analyte concentration (50 mg L−1, 100 mg L−1, and 150 mg L−1), and adsorbent concentration (0.5 g L−1, 1.0 g L−1, and 2.0 g L−1). The Taguchi method was used to plan a minimum number of experiments. The following optimal levels were thus determined for the four factors: cross-linking density: 0.1 mass %; template content: 0.5 mass %; initial analyte concentration: 150 mg L−1; and adsorbent concentration: 0.3 g L−1.

[1] Beppu, M., Arruda, E. J., Vieira, R. S., & Santos, N. N. (2004). Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science, 240, 227–235. DOI: 10.1016/j.memsci.2004.04.025. http://dx.doi.org/10.1016/j.memsci.2004.04.02510.1016/j.memsci.2004.04.025Suche in Google Scholar

[2] Bogya, E. S., Barabás, R., Csavdári, C., Dejeu, V., & Bâldea, I. (2009). Hydroxyapatite modified with silica used for sorption of copper(II). Chemical Papers, 63, 568–573. DOI: 10.2478/s11696-009-0059-x. http://dx.doi.org/10.2478/s11696-009-0059-x10.2478/s11696-009-0059-xSuche in Google Scholar

[3] Borneman, Z. (2007). Particle loaded membrane chromatography. Ph.D. thesis, University of Twente, Twente: The Netherlands. Suche in Google Scholar

[4] Bulgariu, L., Bulgariu, D., & Macoveanu, M. (2012). Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat. Chemical Papers, 66, 239–247. DOI: 10.2478/s11696-012-0149-z. http://dx.doi.org/10.2478/s11696-012-0149-z10.2478/s11696-012-0149-zSuche in Google Scholar

[5] Cao, J., Tan, Y. B., Che, Y. J., & Xin, H. P. (2010). Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: An effective adsorbent for the removal of heavy metal from aqueous solution. Bioresource Technology, 101, 2558–2561. DOI: 10.1016/j.biortech.2009.10.069. http://dx.doi.org/10.1016/j.biortech.2009.10.06910.1016/j.biortech.2009.10.069Suche in Google Scholar

[6] Chen, A. H., Yang, C. Y., Chen, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068–1075. DOI: 10.1016/j.jhazmat.2008.07.073. http://dx.doi.org/10.1016/j.jhazmat.2008.07.07310.1016/j.jhazmat.2008.07.073Suche in Google Scholar

[7] Chen, J. H., Li, G. P., Liu, Q. L., Ni, J. C., Wu, W. B., & Lin, J. M. (2010). Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chemical Engineering Journal, 165, 465–473. DOI: 10.1016/j.cej.2010.09.034. http://dx.doi.org/10.1016/j.cej.2010.09.03410.1016/j.cej.2010.09.034Suche in Google Scholar

[8] Chen, J. H., Lin, H., Luo, Z. H., He, Y. S., & Li, G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination, 277, 265–273. DOI: 10.1016/j.desal.2011.04.040. http://dx.doi.org/10.1016/j.desal.2011.04.04010.1016/j.desal.2011.04.040Suche in Google Scholar

[9] Ghaee, A., Shariaty-Niassar, M., Barzin, J., & Matsuura, T. (2010). Effects of chitosan membrane morphology on copper ion adsorption. Chemical Engineering Journal, 165, 46–55. DOI: 10.1016/j.cej.2010.08.051. http://dx.doi.org/10.1016/j.cej.2010.08.05110.1016/j.cej.2010.08.051Suche in Google Scholar

[10] Guibal, E. (2004). Interactions of metal ions with chitosanbased sorbents: a review. Separation and Purification Technology, 38, 43–74. DOI: 10.1016/j.seppur.2003.10.004. http://dx.doi.org/10.1016/j.seppur.2003.10.00410.1016/j.seppur.2003.10.004Suche in Google Scholar

[11] Koyano, T., Koshizaki, N., Umehara, H., Nagura, M., & Minoura, N. (2000). Surface states of PVA/chitosan blended hydrogels. Polymer, 41, 4461–4465. DOI: 10.1016/s0032-3861(99)00675-8. http://dx.doi.org/10.1016/S0032-3861(99)00675-810.1016/S0032-3861(99)00675-8Suche in Google Scholar

[12] Lépinay, S., Kham, K., Millot, M. C., & Carbonnier, B. (2012). In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010-2011. Chemical Papers, 66, 340–351. DOI: 10.2478/s11696-012-0134-6. http://dx.doi.org/10.2478/s11696-012-0134-610.2478/s11696-012-0134-6Suche in Google Scholar

[13] Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42, 237–247. DOI: 10.1016/j.seppur.2004.08.002. http://dx.doi.org/10.1016/j.seppur.2004.08.00210.1016/j.seppur.2004.08.002Suche in Google Scholar

[14] Lufting, J. T., & Jordan, V. S. (1998). Design of experiments in quality engineering. New York, NY, USA: McGraw-Hill. Suche in Google Scholar

[15] Mohammadi, T., & Safavi, M. A. (2009). Application of Taguchi method in optimization of desalination by vacuum membrane distillation. Desalination, 249, 83–89. DOI: 10.1016/j.desal.2009.01.017. http://dx.doi.org/10.1016/j.desal.2009.01.01710.1016/j.desal.2009.01.017Suche in Google Scholar

[16] Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3. http://dx.doi.org/10.2478/s11696-013-0310-310.2478/s11696-013-0310-3Suche in Google Scholar

[17] Shawky, H. A. (2009). Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). Journal of Applied Polymer Science, 114, 2608–2615. DOI: 10.1002/app.30816. http://dx.doi.org/10.1002/app.3081610.1002/app.30816Suche in Google Scholar

[18] Tasselli, F., Donato, L., & Drioli, E. (2008). Evaluation of molecularly imprinted membranes based on different acrylic copolymers. Journal of Membrane Science, 320, 167–172. DOI: 10.1016/j.memsci.2008.03.071. http://dx.doi.org/10.1016/j.memsci.2008.03.07110.1016/j.memsci.2008.03.071Suche in Google Scholar

[19] Tofighy, M. A., Shirazi, Y., Mohammadi, T., & Pak, A. (2011). Salty water desalination using carbon nanotubes membrane. Chemical Engineering Journal, 168, 1064–1072. DOI: 10.1016/j.cej.2011.01.086. http://dx.doi.org/10.1016/j.cej.2011.01.08610.1016/j.cej.2011.01.086Suche in Google Scholar

[20] Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, 77–93. DOI: 10.1016/j.carbpol.2003.08.005. http://dx.doi.org/10.1016/j.carbpol.2003.08.00510.1016/j.carbpol.2003.08.005Suche in Google Scholar

[21] Vatanpour, V., Madaeni, S. S., Zinadini, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42. DOI: 10.1016/j.memsci.2011.02.030. http://dx.doi.org/10.1016/j.memsci.2011.02.03010.1016/j.memsci.2011.02.030Suche in Google Scholar

[22] Vieira, R. S., & Beppu, M. M. (2006). Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279, 196–207. DOI: 10.1016/j.colsurfa.2006.01.026. http://dx.doi.org/10.1016/j.colsurfa.2006.01.02610.1016/j.colsurfa.2006.01.026Suche in Google Scholar

[23] Vold, I. M. N., Vårum, K. M., Guibal, E., & Smidsrød, O. (2003). Binding of ions to chitosan-selectivity studies. Carbohydrate Polymers, 54, 471–477. DOI: 10.1016/j.carbpol.2003.07.001. http://dx.doi.org/10.1016/j.carbpol.2003.07.00110.1016/j.carbpol.2003.07.001Suche in Google Scholar

[24] Wan Ngah, W. S., Kamari, A., & Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34, 155–161. DOI: 10.1016/j.ijbiomac.2004.03.001. http://dx.doi.org/10.1016/j.ijbiomac.2004.03.00110.1016/j.ijbiomac.2004.03.001Suche in Google Scholar PubMed

[25] Wan Ngah, W. S., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143, 62–72. DOI: 10.1016/j.cej.2007.12.006. http://dx.doi.org/10.1016/j.cej.2007.12.00610.1016/j.cej.2007.12.006Suche in Google Scholar

[26] Wang, X. J., Xu, Z. L., Bing, N. C., & Yang, Z. G. (2008). Preparation and characterization of metal-complex imprinted PVDF hollow fiber membranes. Journal of Applied Polymer Science, 109, 64–73. DOI: 10.1002/app.26805. http://dx.doi.org/10.1002/app.2680510.1002/app.26805Suche in Google Scholar

[27] Wang, X. W., Zhang, L., Ma, C. L., Song, R. Y., Hou, H. B., & Li, D. L. (2009). Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy, 100, 82–86. DOI: 10.1016/j.hydromet.2009.10.006. http://dx.doi.org/10.1016/j.hydromet.2009.10.00610.1016/j.hydromet.2009.10.006Suche in Google Scholar

[28] Wang, Z. Q., Wang, M., Wu, G. H., Shen, Y. Y., & He, C. Y. (2010). Ion imprinted sol-gel nanotubes membrane for selective separation of copper ion from aqueous solution. Microchimica Acta, 169, 195–200. DOI: 10.1007/s00604-010-0332-2. http://dx.doi.org/10.1007/s00604-010-0418-x10.1007/s00604-010-0332-2Suche in Google Scholar

[29] Yan, M., & Ramström, O. (2005). Molecularly imprinted materials: Science and technology. New York, NY, USA: Marcel Dekker. Suche in Google Scholar

[30] Zhai, Y. H., Liu, Y. W., Chang, X. J., Ruan, X. F., & Liu, J. L. (2008). Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics. Reactive and Functional Polymers, 68, 284–291. DOI: 10.1016/j.reactfunctpolym.2007.08.013. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.08.01310.1016/j.reactfunctpolym.2007.08.013Suche in Google Scholar

[31] Zhang, L., Yang, S. W., Han, T., Zhong, L. L., Ma, C. L., Zhou, Y. Z., & Han, X. L. (2012). Improvement of Ag(I) adsorption onto chitosan/triethanolamine composite sorbent by an ionimprinted technology. Applied Surface Science, 263, 696–703. DOI: 10.1016/j.apsusc.2012.09.143. http://dx.doi.org/10.1016/j.apsusc.2012.09.14310.1016/j.apsusc.2012.09.143Suche in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0509-3/html
Button zum nach oben scrollen