Home Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
Article
Licensed
Unlicensed Requires Authentication

Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation

  • Xiong Liu EMAIL logo , Dong-Liang Yang , Jia-Jia Liu , Jing Zhou and Nana Zhao
Published/Copyright: February 9, 2014
Become an author with De Gruyter Brill

Abstract

This study concerns the preparation of a new eburnamine-type alkaloid, methyl (3α,14β,15β,16α)-17,18-didehydro-14,15-dihydroeburnamine-15-methoxy-14-carboxylate (VIII). This alkaloid was prepared from (+)-17,18-dehydroapovincamine (V) using Lewis acid and/or ion exchange resin as catalyst. The hydroalkoxylation reaction of V with methanol was investigated in terms of catalyst, solvent, temperature, and time of reaction. A one-pot method for synthetising this alkaloid was established. The optimal conditions for the reaction are discussed.

[1] Behr, A., Johnen, L., & Neubert, P. (2012). A sustainable route from the renewable myrcene to methyl ethers via direct hydroalkoxylation. Catalysis Science & Technology, 2, 88–92. DOI: 10.1039/c1cy00359c. http://dx.doi.org/10.1039/c1cy00359c10.1039/C1CY00359CSearch in Google Scholar

[2] Calvo Mondelo, F., & Manresa Ferrero, M. T. (1991). Spanish Patent No. ES2018954A6. Madrid, Spain. Spanish Patent and Trade Mark Office. Search in Google Scholar

[3] Dehn, F. B. (1972). UK Patent No. GB1382609A. Newport, UK. Intellectual Property Office. Search in Google Scholar

[4] Éles, J., Kalaus, G., Szabó, L., Lévai, A., Greiner, I., Kajtár-Peredy, M., Szabó, P., & Szántay, C. (2002). Synthesis of vinca alkaloids and related compounds 98. Oxidation with dimethyldioxirane of compounds containing the aspidospermane and quebrachamine ring system. A simple synthesis of (7S,20S)-(+)-rhazidigenine and (2R,7S,20S)-(+)-rhazidine. Journal of Heterocyclic Chemistry, 39, 767–771. DOI: 10.1002/jhet.5570390423. http://dx.doi.org/10.1002/jhet.557039042310.1002/jhet.5570390423Search in Google Scholar

[5] Ellies, D., & Rosenberg, W. (2010). U.S. Patent No. US2010000 3324 (A1). Washington, D.C., USA: U.S. Patent and Trademark Office. Search in Google Scholar

[6] Kuge, Y., Nakazawa, H., Kometani, T., Sugaya, T., Mochida, K., & Tomioka, S. (1994). A Facile one-pot synthesis of vinpocetine. Synthetic Communications, 24, 759–766. DOI: 10.1080/00397919408011297. http://dx.doi.org/10.1080/0039791940801129710.1080/00397919408011297Search in Google Scholar

[7] Magnotta, V. L., & Gates, B. C. (1977). Superacid polymers: Synthesis and analysis of AlCl3 — sulfonic acid resin complexes. Journal of Polymer Science, Part A: Polymer Chemistry, 15, 1341–1347. DOI: 10.1002/pol.1977.170150605. 10.1002/pol.1977.170150605Search in Google Scholar

[8] Mergen, M. R. D., Jefferson, B., Parsons, S. A., & Jarvis, P. (2008). Magnetic ion-exchange resin treatment: Impact of water type and resin use. Water Research, 42, 1977–1988. DOI: 10.1016/j.watres.2007.11.032. http://dx.doi.org/10.1016/j.watres.2007.11.03210.1016/j.watres.2007.11.032Search in Google Scholar PubMed

[9] Nárai, G., Sohár, P., Csámpai, A., & Zsadon, B. (1998). Synthesis of a new δ-lactone bridget apovincamine derivative. Heterocycles, 48, 151–154. DOI: 10.3987/com-97-7983. http://dx.doi.org/10.3987/COM-97-798310.3987/COM-97-7983Search in Google Scholar

[10] Neckers, D. C., Kooistra, D. A., & Green, G. W. (1972). Polymer-protected reagents. polystyrene-aluminum chloride. Journal of the American Chemical Society, 94, 9284–9285. DOI: 10.1021/ja00781a080. http://dx.doi.org/10.1021/ja00781a08010.1021/ja00781a080Search in Google Scholar

[11] Nemes, A., Szántay, C., Jr., Czibula, L., & Greiner, I. (2007). Synthesis of 18-hydroxyvincamines and epoxy-1,14-secovincamines; a new proof for the aspidospermane-eburnane rearrangement. Heterocycles, 71, 2347–2362. DOI: 10.3987/com-07-11114. http://dx.doi.org/10.3987/COM-07-1111410.3987/COM-07-11114Search in Google Scholar

[12] Palmisano, G., Danieli, B., Lesma, G., Trupiano, F., & Pilati, T. (1988). Oxidation of.beta.-anilinoacrylate alkaloids vincadifformine and tabersonine by Fremy’s salt. A mechanistic insight into the rearrangement of aspidosperma to hunteria alkaloids. Journal of Organic Chemistry, 53, 1056–1064. DOI: 10.1021/jo00240a023. http://dx.doi.org/10.1021/jo00240a02310.1021/jo00240a023Search in Google Scholar

[13] Qin, X. G., Yuan, Y. J., Wu, J. C., & Yang, J. (2007). Separation of alkaloids from Sophora alopecuroides L. by adsorption using macroporous resins. Journal of Chemical Engineering of Japan, 40, 93–97. DOI: 10.1252/jcej.40.93. http://dx.doi.org/10.1252/jcej.40.9310.1252/jcej.40.93Search in Google Scholar

[14] Sket, B., & Zupan, M. (1983). Polymer-supported boron trifluoride. Journal of Macromolecular Science: Part A — Chemistry, 19, 643–652. DOI: 10.1080/00222338308069445. http://dx.doi.org/10.1080/0022233830806944510.1080/00222338308069445Search in Google Scholar

[15] Vas, A., & Gulyás, B. (2005). Eburnamine derivatives and the brain. Medicinal Research Reviews, 25, 737–757. DOI: 10.1002/med.20043. http://dx.doi.org/10.1002/med.2004310.1002/med.20043Search in Google Scholar PubMed

[16] Whang, K. J., Lee, K. I., & Lee, Y. K. (1984). The synthesis of polymeric catalyst using ion exchange resin and its application for esterification. Bulletin of the Chemical Society of Japan, 57, 2341–2342. DOI: 10.1246/bcsj.57.2341. http://dx.doi.org/10.1246/bcsj.57.234110.1246/bcsj.57.2341Search in Google Scholar

[17] Zajer, B., Karpati, E., Kiraly, S., Keve, T., Zsadon, B., Fekete, G., Loerincz, C., Szporny, L., Rosdy, B., Forgach, L., & Galambos, J. (1982). Germany Patent No. DE3204630 (A1). Munich, Germany. German Patent and Trade Mark Office. Search in Google Scholar

[18] Zhang, X., Zhan, Y., Li, Y., Song, W., & Xu, X. (2008). China Patent No. CN101250188A. Beijing. State Intellectural Property Office of The P.R.C. Search in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0512-8/html
Scroll to top button