Abstract
A combination of ultrasonic (US) and [bmim]AlCl4 ionic liquid is used as an alternative to conventional acid catalysts in the Kabachnik-Fields reaction of an amine and aryl aldehyde with phosphite leading to the formation of aminophosphonates. The reaction time was significantly reduced and the reaction progressed very smoothly.
[1] Azizi, N., & Saidi, M. R. (2003). Synthesis of tertiary α-amino phosphonate by one-pot three-component coupling mediated by LPDE. Tetrahedron, 59, 5329–5332. DOI: 10.1016/s0040-4020(03)00759-2. http://dx.doi.org/10.1016/S0040-4020(03)00759-210.1016/S0040-4020(03)00759-2Search in Google Scholar
[2] Beers, S. A., Schwender, C. F., Loughney, D. A., Malloy, E., Demarest, K., & Jordan, J. (1996). Phosphatase inhibitors — III. Benzylaminophosphonic acids as potent inhibitors of human prostatic acid phosphatase. Bioorganic & Medicinal Chemistry, 4, 1693–1701. DOI: 10.1016/0968-0896(96)00186-1. 10.1016/0968-0896(96)00186-1Search in Google Scholar
[3] Danila, D. C., Wang, X. Y, Hubble, H., Antipin, I. S., & Pinkhassik, E. (2008). Increasing permeability of phospholipid bilayer membranes to alanine with synthetic α-aminophosphonate carriers. Bioorganic & Medicinal Chemistry Letters, 18, 2320–2323. DOI: 10.1016/j.bmcl.2008.02.081. http://dx.doi.org/10.1016/j.bmcl.2008.02.08110.1016/j.bmcl.2008.02.081Search in Google Scholar
[4] Disale, S. T., Kale, S. R., Kahandal, S. S., Srinivasan, T. G., & Jayaram, R. V. (2012). Choline chloride·2ZnCl2 ionic liquid: An efficient and reusable catalyst for the solvent free Kabachnik-Fields reaction. Tetrahedron Letters, 53, 2277–2279. DOI: 10.1016/j.tetlet.2012.02.054. http://dx.doi.org/10.1016/j.tetlet.2012.02.05410.1016/j.tetlet.2012.02.054Search in Google Scholar
[5] Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r. http://dx.doi.org/10.1021/cr010338r10.1021/cr010338rSearch in Google Scholar
[6] Fumino, K., Peppel, T., Roth, C., Geppert-Rybczynska, M., Zaitsau, D. H., Lehmann, J. K., Verevkin, S. P., Köckerling, M., & Ludwig, R. (2011). The influence of hydrogen bonding on the physical properties of ionic liquids. Physical Chemistry Chemical Physics, 13, 14064–14075. DOI: 10.1039/c1cp20732f. http://dx.doi.org/10.1039/c1cp20732f10.1039/c1cp20732fSearch in Google Scholar
[7] Gallardo-Macias, R., & Nakayama, K. (2010). Tin(II) compounds as catalysts for the Kabachnik-Fields reaction under solvent-free conditions: Facile synthesis of α-aminophosphonates. Synthesis, 2010, 57–62. DOI: 10.1055/s-0029-1217091. http://dx.doi.org/10.1055/s-0029-1217091Search in Google Scholar
[8] Gordon, C. M. (2001). New developments in catalysis using ionic liquids. Applied Catalysis A: General, 222, 101–117. DOI: 10.1016/s0926-860x(01)00834-1. http://dx.doi.org/10.1016/S0926-860X(01)00834-110.1016/S0926-860X(01)00834-1Search in Google Scholar
[9] Mandhane, P. G., Joshi, R. S., Nagargoje, D. R., & Gill, C. H. (2011). Thiamine hydrochloride (VB1): An efficient catalyst for one-pot synthesis of α-aminophosphonates under ultrasonic irradiation. Chinese Chemical Letters, 22, 563–566. DOI: 10.1016/j.cclet.2010.11.021. http://dx.doi.org/10.1016/j.cclet.2010.11.02110.1016/j.cclet.2010.11.021Search in Google Scholar
[10] Niralwad, K. S., Shingate, B. B., & Shingare, M. S. (2010). Solvent-free sonochemical preparation of α-aminophosphonates catalyzed by 1-hexanesulphonic acid sodium salt. Ultrasonics Sonochemistry, 17, 760–763. DOI: 10.1016/j.ultsonch.2010.02.002. http://dx.doi.org/10.1016/j.ultsonch.2010.02.00210.1016/j.ultsonch.2010.02.002Search in Google Scholar PubMed
[11] Pratt, R. F. (1989). Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Science, 246, 917–919. DOI: 10.1126/science.2814513. http://dx.doi.org/10.1126/science.281451310.1126/science.2814513Search in Google Scholar PubMed
[12] Ohara, M., Nakamura, S., & Shibata, N. (2011). Direct enantioselective three-component Kabachnik-Fields reaction catalyzed by chiral bis(imidazoline)-zinc(II) catalysts. Advanced Synthesis & Catalysis, 353, 3285–3289. DOI: 10.1002/adsc.201100482. http://dx.doi.org/10.1002/adsc.20110048210.1002/adsc.201100482Search in Google Scholar
[13] Ordóñez, M., Sayago, F. J., & Cativiela, C. (2012). Synthesis of quaternary α-aminophosphonic acids. Tetrahedron, 68, 6369–6412. DOI: 10.1016/j.tet.2012.05.008. http://dx.doi.org/10.1016/j.tet.2012.05.00810.1016/j.tet.2012.05.008Search in Google Scholar
[14] Orsini, F., Sello, G., & Sisti, M. (2010). Aminophosphonic ccids and derivatives. Synthesis and biological applications. Current Medicinal Chemistry, 17, 264–289. DOI: 10.2174/092986710790149729. http://dx.doi.org/10.2174/09298671079014972910.2174/092986710790149729Search in Google Scholar PubMed
[15] Ramalingam, S., & Kumar, P. (2008). Synthesis of α-aminophosphonates by three-component condensation of carbonyl compound, amine, and dialkyl phosphite using yttria-zirconia based Lewis acid catalyst. Catalysis Letters, 125, 315–319. DOI: 10.1007/s10562-008-9562-x. http://dx.doi.org/10.1007/s10562-008-9562-x10.1007/s10562-008-9562-xSearch in Google Scholar
[16] Ranu, B. C., & Hajra, A. (2002). A simple and green procedure for the synthesis of α-aminophosphonate by a one-pot three-component condensation of carbonyl compound, amine and diethyl phosphite without solvent and catalyst. Green Chemistry, 4, 551–554. DOI: 10.1039/b205747f. http://dx.doi.org/10.1039/b205747f10.1039/B205747FSearch in Google Scholar
[17] Rostamnia, S., & Lamei, K. (2003). A rapid, catalyst-free, three-component synthesis of rhodanines in water using ultrasound. Synthesis, 2011, 3080–3082. DOI: 10.1055/s-0030-1260158. http://dx.doi.org/10.1055/s-0030-126015810.1055/s-0030-1260158Search in Google Scholar
[18] Rostamnia, S., & Zabardasti, A. (2003). SBA-15/TFE (SBA-15/2,2,2-trifluoroethanol) as a suitable and effective metalfree catalyst for the preparation of the tri- and tetrasubstituted imidazoles via one-pot multicomponent method. Journal of Fluorine Chemistry, 144, 69–72. DOI: 10.1016/j.jfluchem.2012.07.006. http://dx.doi.org/10.1016/j.jfluchem.2012.07.00610.1016/j.jfluchem.2012.07.006Search in Google Scholar
[19] Rostamnia, S. (2011). Eco-friendly supported nanoparticles as a green approach. Research Journal of Chemistry and Environment, 15, 89–91. Search in Google Scholar
[20] Rostamnia, S., Karimi, Z., & Ghavidel, M. (2012a). Cetyltrimethylammonium bromide-surfactant aqueous micelles as a green and ultra-rapid reactor for synthesis of 5-oxo-2-thioxo-2,5-dihydro-3-thiophenecarboxylate derivatives. Journal of Sulfur Chemistry, 33, 313–318. DOI: 10.1080/17415993.2012.662980. http://dx.doi.org/10.1080/17415993.2012.66298010.1080/17415993.2012.662980Search in Google Scholar
[21] Rostamnia, S., Lamei, K., Mohammadquli, M., Sheykhan, M., & Heydari, A. (2012b). Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): An efficient, fast and reusable green catalyst for the Ugi-like Groebke-Blackburn-Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Letters, 53, 5257–5260. DOI: 10.1016/j.tetlet.2012.07.075. http://dx.doi.org/10.1016/j.tetlet.2012.07.07510.1016/j.tetlet.2012.07.075Search in Google Scholar
[22] Tibhe, G. D., Reyes-González, M. A., Cativiela, C., & Ordóñez, M. (2012). Microwave-assisted high diastereoselective synthesis of α-aminophosphonates under solvent and catalyst free-conditions. Journal of the Mexican Chemical Society, 56, 183–187. Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy