Startseite Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction

  • Sadegh Rostamnia EMAIL logo und Mojtaba Amini
Veröffentlicht/Copyright: 9. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A combination of ultrasonic (US) and [bmim]AlCl4 ionic liquid is used as an alternative to conventional acid catalysts in the Kabachnik-Fields reaction of an amine and aryl aldehyde with phosphite leading to the formation of aminophosphonates. The reaction time was significantly reduced and the reaction progressed very smoothly.

[1] Azizi, N., & Saidi, M. R. (2003). Synthesis of tertiary α-amino phosphonate by one-pot three-component coupling mediated by LPDE. Tetrahedron, 59, 5329–5332. DOI: 10.1016/s0040-4020(03)00759-2. http://dx.doi.org/10.1016/S0040-4020(03)00759-210.1016/S0040-4020(03)00759-2Suche in Google Scholar

[2] Beers, S. A., Schwender, C. F., Loughney, D. A., Malloy, E., Demarest, K., & Jordan, J. (1996). Phosphatase inhibitors — III. Benzylaminophosphonic acids as potent inhibitors of human prostatic acid phosphatase. Bioorganic & Medicinal Chemistry, 4, 1693–1701. DOI: 10.1016/0968-0896(96)00186-1. 10.1016/0968-0896(96)00186-1Suche in Google Scholar

[3] Danila, D. C., Wang, X. Y, Hubble, H., Antipin, I. S., & Pinkhassik, E. (2008). Increasing permeability of phospholipid bilayer membranes to alanine with synthetic α-aminophosphonate carriers. Bioorganic & Medicinal Chemistry Letters, 18, 2320–2323. DOI: 10.1016/j.bmcl.2008.02.081. http://dx.doi.org/10.1016/j.bmcl.2008.02.08110.1016/j.bmcl.2008.02.081Suche in Google Scholar

[4] Disale, S. T., Kale, S. R., Kahandal, S. S., Srinivasan, T. G., & Jayaram, R. V. (2012). Choline chloride·2ZnCl2 ionic liquid: An efficient and reusable catalyst for the solvent free Kabachnik-Fields reaction. Tetrahedron Letters, 53, 2277–2279. DOI: 10.1016/j.tetlet.2012.02.054. http://dx.doi.org/10.1016/j.tetlet.2012.02.05410.1016/j.tetlet.2012.02.054Suche in Google Scholar

[5] Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r. http://dx.doi.org/10.1021/cr010338r10.1021/cr010338rSuche in Google Scholar

[6] Fumino, K., Peppel, T., Roth, C., Geppert-Rybczynska, M., Zaitsau, D. H., Lehmann, J. K., Verevkin, S. P., Köckerling, M., & Ludwig, R. (2011). The influence of hydrogen bonding on the physical properties of ionic liquids. Physical Chemistry Chemical Physics, 13, 14064–14075. DOI: 10.1039/c1cp20732f. http://dx.doi.org/10.1039/c1cp20732f10.1039/c1cp20732fSuche in Google Scholar

[7] Gallardo-Macias, R., & Nakayama, K. (2010). Tin(II) compounds as catalysts for the Kabachnik-Fields reaction under solvent-free conditions: Facile synthesis of α-aminophosphonates. Synthesis, 2010, 57–62. DOI: 10.1055/s-0029-1217091. http://dx.doi.org/10.1055/s-0029-1217091Suche in Google Scholar

[8] Gordon, C. M. (2001). New developments in catalysis using ionic liquids. Applied Catalysis A: General, 222, 101–117. DOI: 10.1016/s0926-860x(01)00834-1. http://dx.doi.org/10.1016/S0926-860X(01)00834-110.1016/S0926-860X(01)00834-1Suche in Google Scholar

[9] Mandhane, P. G., Joshi, R. S., Nagargoje, D. R., & Gill, C. H. (2011). Thiamine hydrochloride (VB1): An efficient catalyst for one-pot synthesis of α-aminophosphonates under ultrasonic irradiation. Chinese Chemical Letters, 22, 563–566. DOI: 10.1016/j.cclet.2010.11.021. http://dx.doi.org/10.1016/j.cclet.2010.11.02110.1016/j.cclet.2010.11.021Suche in Google Scholar

[10] Niralwad, K. S., Shingate, B. B., & Shingare, M. S. (2010). Solvent-free sonochemical preparation of α-aminophosphonates catalyzed by 1-hexanesulphonic acid sodium salt. Ultrasonics Sonochemistry, 17, 760–763. DOI: 10.1016/j.ultsonch.2010.02.002. http://dx.doi.org/10.1016/j.ultsonch.2010.02.00210.1016/j.ultsonch.2010.02.002Suche in Google Scholar PubMed

[11] Pratt, R. F. (1989). Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Science, 246, 917–919. DOI: 10.1126/science.2814513. http://dx.doi.org/10.1126/science.281451310.1126/science.2814513Suche in Google Scholar PubMed

[12] Ohara, M., Nakamura, S., & Shibata, N. (2011). Direct enantioselective three-component Kabachnik-Fields reaction catalyzed by chiral bis(imidazoline)-zinc(II) catalysts. Advanced Synthesis & Catalysis, 353, 3285–3289. DOI: 10.1002/adsc.201100482. http://dx.doi.org/10.1002/adsc.20110048210.1002/adsc.201100482Suche in Google Scholar

[13] Ordóñez, M., Sayago, F. J., & Cativiela, C. (2012). Synthesis of quaternary α-aminophosphonic acids. Tetrahedron, 68, 6369–6412. DOI: 10.1016/j.tet.2012.05.008. http://dx.doi.org/10.1016/j.tet.2012.05.00810.1016/j.tet.2012.05.008Suche in Google Scholar

[14] Orsini, F., Sello, G., & Sisti, M. (2010). Aminophosphonic ccids and derivatives. Synthesis and biological applications. Current Medicinal Chemistry, 17, 264–289. DOI: 10.2174/092986710790149729. http://dx.doi.org/10.2174/09298671079014972910.2174/092986710790149729Suche in Google Scholar PubMed

[15] Ramalingam, S., & Kumar, P. (2008). Synthesis of α-aminophosphonates by three-component condensation of carbonyl compound, amine, and dialkyl phosphite using yttria-zirconia based Lewis acid catalyst. Catalysis Letters, 125, 315–319. DOI: 10.1007/s10562-008-9562-x. http://dx.doi.org/10.1007/s10562-008-9562-x10.1007/s10562-008-9562-xSuche in Google Scholar

[16] Ranu, B. C., & Hajra, A. (2002). A simple and green procedure for the synthesis of α-aminophosphonate by a one-pot three-component condensation of carbonyl compound, amine and diethyl phosphite without solvent and catalyst. Green Chemistry, 4, 551–554. DOI: 10.1039/b205747f. http://dx.doi.org/10.1039/b205747f10.1039/B205747FSuche in Google Scholar

[17] Rostamnia, S., & Lamei, K. (2003). A rapid, catalyst-free, three-component synthesis of rhodanines in water using ultrasound. Synthesis, 2011, 3080–3082. DOI: 10.1055/s-0030-1260158. http://dx.doi.org/10.1055/s-0030-126015810.1055/s-0030-1260158Suche in Google Scholar

[18] Rostamnia, S., & Zabardasti, A. (2003). SBA-15/TFE (SBA-15/2,2,2-trifluoroethanol) as a suitable and effective metalfree catalyst for the preparation of the tri- and tetrasubstituted imidazoles via one-pot multicomponent method. Journal of Fluorine Chemistry, 144, 69–72. DOI: 10.1016/j.jfluchem.2012.07.006. http://dx.doi.org/10.1016/j.jfluchem.2012.07.00610.1016/j.jfluchem.2012.07.006Suche in Google Scholar

[19] Rostamnia, S. (2011). Eco-friendly supported nanoparticles as a green approach. Research Journal of Chemistry and Environment, 15, 89–91. Suche in Google Scholar

[20] Rostamnia, S., Karimi, Z., & Ghavidel, M. (2012a). Cetyltrimethylammonium bromide-surfactant aqueous micelles as a green and ultra-rapid reactor for synthesis of 5-oxo-2-thioxo-2,5-dihydro-3-thiophenecarboxylate derivatives. Journal of Sulfur Chemistry, 33, 313–318. DOI: 10.1080/17415993.2012.662980. http://dx.doi.org/10.1080/17415993.2012.66298010.1080/17415993.2012.662980Suche in Google Scholar

[21] Rostamnia, S., Lamei, K., Mohammadquli, M., Sheykhan, M., & Heydari, A. (2012b). Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): An efficient, fast and reusable green catalyst for the Ugi-like Groebke-Blackburn-Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Letters, 53, 5257–5260. DOI: 10.1016/j.tetlet.2012.07.075. http://dx.doi.org/10.1016/j.tetlet.2012.07.07510.1016/j.tetlet.2012.07.075Suche in Google Scholar

[22] Tibhe, G. D., Reyes-González, M. A., Cativiela, C., & Ordóñez, M. (2012). Microwave-assisted high diastereoselective synthesis of α-aminophosphonates under solvent and catalyst free-conditions. Journal of the Mexican Chemical Society, 56, 183–187. Suche in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0516-4/html
Button zum nach oben scrollen