Abstract
A study was conducted on the treatment of landfill leachate by combining the sequencing batch biofilm reactor (SBBR) method with the electro-Fenton method. The reduction of chemical oxygen demand (COD), biological oxygen demand (BOD5), and ammonia nitrogen (NH4+-N) from the leachate by the SBBR method was investigated. For the electro-Fenton experiment, the changes in COD and total organic carbon (TOC) with the increase in H2O2 dosage and electrolysis time under optimal conditions were also analysed. The results showed that the average efficiencies of reduction of COD, BOD5, and NH4+ -N achieved using the SBBR method were 21.6 %, 54.7 %, and 56.1 %, respectively. The bio-effluent was degraded by the subsequent electro-Fenton process, which was rapid over the first 30 min then subsequently slowed. After 60 min of the electro-Fenton treatment, the efficiencies of reduction of TOC, COD, and BOD5 were 40.5 %, 71.6 %, and 61.0 %, respectively. There is a good correlation between the absorbance of leachate at 254 nm (UV254) and COD or TOC during the electro-Fenton treatment.
[1] Arnold, E., Böhm, B., & Wilderer, P. A. (2000). Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems: a comparison. Water Science and Technology, 41, 115–122. 10.2166/wst.2000.0019Suche in Google Scholar
[2] Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials, 163, 109–114. DOI: 10.1016/j.jhazmat.2008.06.067. http://dx.doi.org/10.1016/j.jhazmat.2008.06.06710.1016/j.jhazmat.2008.06.067Suche in Google Scholar
[3] Campagna, M., Çakmakcı, M., Büşrra Yaman, F., & Özkaya, B. (2013). Molecular weight distribution of a full-scale land-fill leachate treatment by membrane bioreactor and nanofiltration membrane. Waste Management, 33, 866–870. DOI: 10.1016/j.wasman.2012.12.010. http://dx.doi.org/10.1016/j.wasman.2012.12.01010.1016/j.wasman.2012.12.010Suche in Google Scholar
[4] Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (Eds.) (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association (APHA), American Water Works Association, Water Pollution Control Federation. Suche in Google Scholar
[5] De Morais, J. L., & Zamora, P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. Journal of Hazardous Materials, 123, 181–186. DOI: 10.1016/j.jhazmat.2005.03.041. http://dx.doi.org/10.1016/j.jhazmat.2005.03.04110.1016/j.jhazmat.2005.03.041Suche in Google Scholar
[6] Derco, J., Gulyásová, A., & Horňák, M. (2002). Influence of ozonation on biodegradability of refractory organics in a landfill leachate. Chemical Papers, 56, 41–44. Suche in Google Scholar
[7] Derco, J., Žgajnar Gotvajn, A., Zagorc-Končan, J., Almásiová, B., & Kassai, A. (2010). Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 64, 237–245. DOI: 10.2478/s11696-009-0116-5. http://dx.doi.org/10.2478/s11696-009-0116-510.2478/s11696-009-0116-5Suche in Google Scholar
[8] Di Iaconi, C., Lopez, A., Ramadori, R., Di Pinto, A. C., & Passino, R. (2002). Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Research, 36, 2205–2214. DOI: 10.1016/s0043-1354(01)00445-6. http://dx.doi.org/10.1016/S0043-1354(01)00445-610.1016/S0043-1354(01)00445-6Suche in Google Scholar
[9] Di Iaconi, C., Lopez, A., Ramadori, R., & Passino, R. (2003). Tannery wastewater treatment by sequencing batch biofilm reactor. Environmental Science and Technology, 37, 3199–3205. DOI: 10.1021/es030002u. http://dx.doi.org/10.1021/es030002u10.1021/es030002uSuche in Google Scholar
[10] Dollerer, J., & Wilderer, P. A. (1996). Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science and Technology, 34, 437–444. DOI: 10.1016/s0273-1223(96)00776-7. http://dx.doi.org/10.1016/S0273-1223(96)00776-710.1016/S0273-1223(96)00776-7Suche in Google Scholar
[11] Fernandes, A., Pacheco, M. J., Ciríaco, L., & Lopes, A. (2012). Anodic oxidation of a biologically treated leachate on a boron-doped diamond anode. Journal of Hazardous Materials, 199–200, 82–87. DOI: 10.1016/j.jhazmat.2011.10.074. http://dx.doi.org/10.1016/j.jhazmat.2011.10.07410.1016/j.jhazmat.2011.10.074Suche in Google Scholar PubMed
[12] González-Martinez, S., & Wilderer, P. A. (1991). Phosphate removal in a biofilm reactor. Water Science and Technology, 23, 1405–1415. 10.2166/wst.1991.0593Suche in Google Scholar
[13] Karrer, N. J., Ryhiner, G., & Heinzle, E. (1997). Applicability test for combined biological-chemical treatment of wastewaters containing biorefractory compounds. Water Research, 31, 1013–1020. DOI: 10.1016/s0043-1354(96)00356-9. http://dx.doi.org/10.1016/S0043-1354(96)00356-910.1016/S0043-1354(96)00356-9Suche in Google Scholar
[14] Kim, D. S. Jung, N. S., & Park, Y. S. (2008). Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean Journal of Chemical Engineering, 25, 793–800. DOI: 10.1007/s11814-008-0130-2. http://dx.doi.org/10.1007/s11814-008-0130-210.1007/s11814-008-0130-2Suche in Google Scholar
[15] Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32, 297–336. DOI: 10.1080/10643380290813462. http://dx.doi.org/10.1080/1064338029081346210.1080/10643380290813462Suche in Google Scholar
[16] Kulikowska, D., Jóźwiak, T., Kuczajowska-Zadrożna, M., Pokój, T., & Gusiatin, Z. (2011). Efficiency of nitrification and organics removal from municipal landfill leachate in the rotating biological contactor (RBC). Desalination and Water Treatment, 33, 125–131. DOI: 10.5004/dwt.2011.2617. http://dx.doi.org/10.5004/dwt.2011.261710.5004/dwt.2011.2617Suche in Google Scholar
[17] Lopez, A., Pagano, M., Volpe, A., & Di Pinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54, 1005–1010. DOI: 10.1016/j.chemosphere.2003.09.015. http://dx.doi.org/10.1016/j.chemosphere.2003.09.01510.1016/j.chemosphere.2003.09.015Suche in Google Scholar PubMed
[18] Lou, Z., & Zhao, Y. (2007). Size-fractionation and characterization of refuse landfill leachate by sequential filtration using membranes with varied porosity. Journal of Hazardous Materials, 147, 257–264. DOI: 10.1016/j.jhazmat.2006.12.084. http://dx.doi.org/10.1016/j.jhazmat.2006.09.02610.1016/j.jhazmat.2006.12.084Suche in Google Scholar PubMed
[19] Mahmud, K., Hossain, M. D., & Shams, S. (2012). Different treatment strategies for highly polluted landfill leachate in developing countries. Waste Management, 32, 2096–2105. DOI: 10.1016/j.wasman.2011.10.026. http://dx.doi.org/10.1016/j.wasman.2011.10.02610.1016/j.wasman.2011.10.026Suche in Google Scholar PubMed
[20] Mohajeri, S., Aziz, H. A., Isa, M. H., Zahed, M. A., & Adlan, M. N. (2010). Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. Journal of Hazardous Materials, 176, 749–758. DOI: 10.1016/j.jhazmat.2009.11.099. http://dx.doi.org/10.1016/j.jhazmat.2009.11.09910.1016/j.jhazmat.2009.11.099Suche in Google Scholar PubMed
[21] Morgenroth, E., & Wilderer, P. A. (1998). Sequencing batch reactor technology: Concepts, design and experiences. Water and Environment Journal, 12, 314–320. DOI: 10.1111/j.1747-6593.1998.tb00192.x. http://dx.doi.org/10.1111/j.1747-6593.1998.tb00192.x10.1111/j.1747-6593.1998.tb00192.xSuche in Google Scholar
[22] Nguyen, A. L., Duff, S. J. B., & Sheppard, J. D. (2000). Application of feedback control based on dissolved oxygen to a fixed-film sequencing batch reactor for treatment of brewery wastewater. Water Environment Research, 72, 75–83. DOI: 10.2175/106143000x137130. http://dx.doi.org/10.2175/106143000X13713010.2175/106143000X137130Suche in Google Scholar
[23] Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468–493. DOI: 10.1016/j.jhazmat.2007.09.077. http://dx.doi.org/10.1016/j.jhazmat.2007.09.07710.1016/j.jhazmat.2007.09.077Suche in Google Scholar
[24] SEPA (1987). National standard of the People’s Republic of China: Water quality-Determination of ammonium-Nessler’s reagent colorimetric method. GB 7479-87. Beijing, China: The State Environmental Protection Administration. Suche in Google Scholar
[25] Sirianuntapiboon, S., & Yommee, S. (2006). Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR). Journal of Environmental Management, 78, 149–156. DOI: 10.1016/j.jenvman.2005.04.012. http://dx.doi.org/10.1016/j.jenvman.2005.04.01210.1016/j.jenvman.2005.04.012Suche in Google Scholar
[26] Vilar, V. J. P., Rocha, E. M. R., Mota, F. S., Fonseca, A., Saraiva, I., & Boaventura, R. A. R. (2011). Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Research, 45, 2647–2658. DOI: 10.1016/j.watres.2011.02.019. http://dx.doi.org/10.1016/j.watres.2011.02.01910.1016/j.watres.2011.02.019Suche in Google Scholar
[27] Wang, X., Han, J., Chen, Z., Jian, L., Gu, X., & Lin, C. J. (2012). Combined processes of two-stage Fenton-biological anaerobic filter-biological aerated filter for advanced treatment of landfill leachate. Waste Management, 32, 2401–2405. DOI: 10.1016/j.wasman.2012.06.022. http://dx.doi.org/10.1016/j.wasman.2012.06.02210.1016/j.wasman.2012.06.022Suche in Google Scholar
[28] White, D. M., & Schnabel, W. (1998). Treatment of cyanide waste in a sequencing batch biofilm reactor. Water Research, 32, 254–257. DOI: 10.1016/s0043-1354(97)00167-x. http://dx.doi.org/10.1016/S0043-1354(97)00167-X10.1016/S0043-1354(97)00167-XSuche in Google Scholar
[29] Zhang, H., Choi, H. J., & Huang, C. P. (2005). Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 125, 166–174. DOI: 10.1016/j.jhazmat.2005.05.025. http://dx.doi.org/10.1016/j.jhazmat.2005.05.02510.1016/j.jhazmat.2005.05.025Suche in Google Scholar PubMed
[30] Zhang, H., Zhang, D., & Zhou, J. (2006). Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials, 135, 106–111. DOI: 10.1016/j.jhazmat.2005.11.025. http://dx.doi.org/10.1016/j.jhazmat.2005.11.02510.1016/j.jhazmat.2005.11.025Suche in Google Scholar PubMed
[31] Zhang, H., Cheng, Z., & Zhang, D. (2007). Treatment of landfill leachate by electro-Fenton process. Fresenius Environmental Bulletin, 16, 1216–1219. Suche in Google Scholar
[32] Zhang, H., Ran, X., Wu, X., & Zhang, D. (2011). Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology. Journal of Hazardous Materials, 188, 261–268. DOI: 10.1016/j.jhazmat.2011.01.097. http://dx.doi.org/10.1016/j.jhazmat.2011.01.09710.1016/j.jhazmat.2011.01.097Suche in Google Scholar PubMed
[33] Zhang, H., Wu, X., & Li, X. (2012). Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chemical Engineering Journal, 210, 188–194. DOI: 10.1016/j.cej.2012.08.094. http://dx.doi.org/10.1016/j.cej.2012.08.09410.1016/j.cej.2012.08.094Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Artikel in diesem Heft
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy