Startseite Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber

  • Waham Laftah EMAIL logo und Shahrir Hashim
Veröffentlicht/Copyright: 9. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The optimum content of cotton microfiber, initiator, cross-linker, and sodium hydroxide were determined using the central composite design method. Polymer hydrogels (PHGs) were characterized using Fourier-transform infrared (FT-IR), scanning electron microscopy, and thermal gravimetric analysis. A comparison between plain PHG and the polymer hydrogel composite (PHGC) in terms of biodegradation, swelling rate, and re-swelling capacity was carried out. The effect of PHGC on the sandy soil holding capacity, urea leaching loss rate (ULLR), and okra plant growth were evaluated. The highest water absorption capacity was obtained at 1.30 mass %, 0.15 mass %, 13.00 mass %, and 13.50 mass % of the initiator, cross-linker, sodium hydroxide, and cotton microfiber, respectively. Cotton microfiber has a prominent effect on the swelling rate, re-swelling capacity, and biodegradability of PHG. Okra plant growth and ULLR were positively affected by PHGC and the best leaching loss rate of 33.3 mass % was observed for the lowest urea loaded sample.

[1] Bledzki, A. K., Sperber, V. E., & Faruk, O. (2002). Natural and wood fibre reinforcement in polymers (Vol. 13). Shrewsbury, UK: Rapra Technology. Suche in Google Scholar

[2] Chun, C. J., Lee, S. M., Kim, S. Y., Yang, H. K.,& Song, S. C. (2009). Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials, 30, 2349–2360. DOI: 10.1016/j.biomaterials.2008.12.083. http://dx.doi.org/10.1016/j.biomaterials.2008.12.08310.1016/j.biomaterials.2008.12.083Suche in Google Scholar

[3] Guilherme, M. R., Reis, A. V., Takahashi, S. H., Rubira, A. F., Feitosa, J. P. A.,& Muniz, E. C. (2005). Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydrate Polymers, 61, 464–471. DOI: 10.1016/j.carbpol.2005.06.017. http://dx.doi.org/10.1016/j.carbpol.2005.06.01710.1016/j.carbpol.2005.06.017Suche in Google Scholar

[4] Hamidi, M., Azadi, A.,& Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60, 1638–1649. DOI: 10.1016/j.addr.2008.08.002. http://dx.doi.org/10.1016/j.addr.2008.08.00210.1016/j.addr.2008.08.002Suche in Google Scholar

[5] Hebeish, A., Hashem, M., Shaker, N., Ramadan, M., El-Sadek, B.,& Hady, M. A. (2009). New development for combined bioscouring and bleaching of cotton-based fabrics. Carbohydrate Polymers, 78, 961–972. DOI: 10.1016/j.carbpol.2009.07. 019. http://dx.doi.org/10.1016/j.carbpol.2009.07.01910.1016/j.carbpol.2009.07.019Suche in Google Scholar

[6] Iovino, R., Zujjo, R., Rao, M. A., Cassar, L.,& Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93, 147–157. DOI: 10.1016/j.polymdegradstab.2007.10.011. http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.01110.1016/j.polymdegradstab.2007.10.011Suche in Google Scholar

[7] Kim, S. J., Yoon, S. G., Lee, Y. M.,& Kim, S. I. (2003). Electrical sensitive behavior of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 88, 286–291. DOI: 10.1016/s0925-4005(02)00371-4. http://dx.doi.org/10.1016/S0925-4005(02)00371-410.1016/S0925-4005(02)00371-4Suche in Google Scholar

[8] Laftah, W. A., Hashim, S.,& Ibrahim, A. N. (2011). Polymer hydrogels: A review. Polymer — Plastics Technology and Engineering, 50, 1475–1486. DOI: 10.1080/03602559.2011.593 082. http://dx.doi.org/10.1080/03602559.2011.59308210.1080/03602559.2011.593082Suche in Google Scholar

[9] Li, A., Wang, A. Q.,& Chen, J. M. (2004). Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent-water mixtures. Journal of Applied Polymer Science, 94, 1869–1876. DOI: 10.1002/app.20850. http://dx.doi.org/10.1002/app.2085010.1002/app.20850Suche in Google Scholar

[10] Liang, R., Yuan, H. B., Xi, G. X.,& Zhou, Q. X. (2009). Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers, 77, 181–187. DOI: 10.1016/j.carbpol.2008.12.018. http://dx.doi.org/10.1016/j.carbpol.2008.12.01810.1016/j.carbpol.2008.12.018Suche in Google Scholar

[11] Lin, J. M., Tang, Q. W.,& Wu, J. H. (2007). The synthesis and electrical conductivity of a polyacrylamide/Cu conducting hydrogel. Reactive and Functional Polymers, 67, 489–494. DOI: 10.1016/j.reactfunctpolym.2007.02.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.02.00210.1016/j.reactfunctpolym.2007.02.002Suche in Google Scholar

[12] Meilert, K. T., Laub, D., & Kiwi, J. (2005). Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A: Chemical, 237, 101–108. DOI: 10.1016/j.molcata.2005.03.040. http://dx.doi.org/10.1016/j.molcata.2005.03.04010.1016/j.molcata.2005.03.040Suche in Google Scholar

[13] Raj Singh, T. R., McCarron, P. A., Woolfson, A. D., & Donnelly, R. F. (2009). Investigation of swelling and network parameters of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels. European Polymer Journal, 45, 1239–1249. DOI: 10.1016/j.eurpolymj.2008.12.019. http://dx.doi.org/10.1016/j.eurpolymj.2008.12.01910.1016/j.eurpolymj.2008.12.019Suche in Google Scholar

[14] Rjiba, N., Nardin, M., Dréan, J. Y.,& Frydrych, R. (2007). A study of the surface properties of cotton fibers by inverse gas chromatography. Journal of Colloid and Interface Science, 314, 373–380. DOI: 10.1016/j.jcis.2007.05.058. http://dx.doi.org/10.1016/j.jcis.2007.05.05810.1016/j.jcis.2007.05.058Suche in Google Scholar

[15] Shinoj, S., Visvanathan, R.,& Panigrahi, S. (2010). Towards industrial utilization of oil palm fibre: Physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosystems Engineering, 106, 378–388. DOI: 10.1016/j.biosystemseng.2010.04.008. http://dx.doi.org/10.1016/j.biosystemseng.2010.04.00810.1016/j.biosystemseng.2010.04.008Suche in Google Scholar

[16] Spagnol, C., Rodrigues, F. H. A., Neto, A. G. V. C., Pereira, A. G. B., Fajardo, A. R., Radovanovic, E., Rubira, A. F.,& Muniz, E. C. (2012a). Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. European Polymer Journal, 48, 454–463. DOI: 10.1016/j.eurpolymj.2011.12.005. http://dx.doi.org/10.1016/j.eurpolymj.2011.12.00510.1016/j.eurpolymj.2011.12.005Suche in Google Scholar

[17] Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F.,& Muniz, E. C. (2012b). Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19, 1225–1237. DOI: 10.1007/s10570-012-9711-7. http://dx.doi.org/10.1007/s10570-012-9711-710.1007/s10570-012-9711-7Suche in Google Scholar

[18] Sreekala, M. S., Kumaran, M. G., & Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66, 821–835. DOI: 10.1002/(sici)1097-4628(19971031)66:5〈821::aid-app2〉3.0.co;2-x. http://dx.doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-XSuche in Google Scholar

[19] Tang, Q. W., Wu, J. H., Sun, H., Fan, S. J., Hu, D.,& Lin, J. M. (2008). Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydrate Polymers, 73, 473–481. DOI: 10.1016/j.carbpol.2007.12.030. http://dx.doi.org/10.1016/j.carbpol.2007.12.03010.1016/j.carbpol.2007.12.030Suche in Google Scholar

[20] Wang, W. B.,& Wang, A. Q. (2009). Synthesis, swelling behaviors, and slow-release characteristics of a guar gum-g-poly(sodium acrylate)/sodium humate superabsorbent. Journal of Applied Polymer Science, 112, 2102–2111. DOI: 10.1002/app.29620. http://dx.doi.org/10.1002/app.2962010.1002/app.29620Suche in Google Scholar

[21] Wu, L., Liu, M. Z.,& Liang, R. (2008). Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresource Technology, 99, 547–554. DOI: 10.1016/j.biortech.2006.12.027. http://dx.doi.org/10.1016/j.biortech.2006.12.02710.1016/j.biortech.2006.12.027Suche in Google Scholar

[22] Xie, J. J., Liu, X. R., Liang, J. F.,& Luo, Y. S. (2009). Swelling properties of superabsorbent poly(acrylic acid-coacrylamide) with different crosslinkers. Journal of Applied Polymer Science, 112, 602–608. DOI: 10.1002/app.29463. http://dx.doi.org/10.1002/app.2946310.1002/app.29463Suche in Google Scholar

[23] Xiong, Z. C., Chen, H. C., Huang, X. C., Xu, L. A., Zhang, L. F.,& Xiong, C. D. (2007). Preparation and properties of thermo-sensitive hydrogels of konjac glucomannan grafted N-isopropylacrylamide for controlled drug delivery. Iranian Polymer Journal, 6, 425–431. Suche in Google Scholar

[24] Yoshimura, T., Matsuo, K.,& Fujioka, R. (2006). Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization. Journal of Applied Polymer Science, 99, 3251–3256. DOI: 10.1002/app.22794. http://dx.doi.org/10.1002/app.2279410.1002/app.22794Suche in Google Scholar

[25] Zhang, J. P.,& Wang, A. Q. (2007). Study on superabsorbent composites. IX: Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. Reactive and Functional Polymers, 67, 737–745. DOI: 10.1016/j.reactfunctpolym.2007.05.001. 10.1016/j.reactfunctpolym.2007.05.001Suche in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0507-5/html
Button zum nach oben scrollen