Startseite Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane

  • Rafał Wawrzyniak EMAIL logo und Wiesław Wasiak
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper reports a new group of adsorbents obtained by modification of silica surface with silane containing 3-benzylketoimine groups with bonded Cu(II) and Ni(II) chlorides. The adsorbents obtained were subjected to a chromatographic study to establish the type of adsorbate-adsorbent interactions for aliphatic and aromatic halogenated hydrocarbons used as adsorbates. The following retention parameters were determined: retention factor (k), Kovats retention index (I), specific retention volume (V g), and molecular retention index (ΔM e). Values of the molecular retention index were subjected to complex statistical analysis providing qualitative relations between the adsorbates’ properties and spatial structure and their retention. It was observed that bonding of chlorides of Cu(II) and Ni(II) with the ketoimine groups resulted in an increase of the retention index and the molecular retention index indicating an increase of the adsorbate-adsorbent interaction in comparison with the reference column coated with silane including a 3-benzylketoimine group without transition metal chlorides. Along with the observed increase of the adsorbate-adsorbent interaction, larger difference between the retention indices was observed for both halogenated compounds. This indicates a positive influence of the introduced transition metals on the selectivity of the adsorbate-adsorbent interactions of the examined columns.

[1] Andersson, P., Haglund, P., Rappe, C., & Tysklind, M. (1996). Ultraviolet absorption characteristics and calculated semi-empirical parameters as chemical descriptors in multivariate modelling of polychlorinated biphenyls. Journal of Chemometrics, 10, 171–185. DOI: 10.1002/(SICI)1099-128X(199603)10:2<171::AID-CEM416>3.0.CO;2-U. http://dx.doi.org/10.1002/(SICI)1099-128X(199603)10:2<171::AID-CEM416>3.0.CO;2-U10.1002/(SICI)1099-128X(199603)10:2<171::AID-CEM416>3.0.CO;2-USuche in Google Scholar

[2] Bielecki, P., & Wasiak, W. (2011). Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships. Chemical Papers, 65, 104–112. DOI: 10.2478/s11696-010-0085-8. http://dx.doi.org/10.2478/s11696-010-0085-810.2478/s11696-010-0085-8Suche in Google Scholar

[3] Deng, H., Huang, P., Hu, Y., Ye, N., & Li, Z. (2005). A novel molecular distance edge vector as applied to chemical modeling of quantitative structure-retention relationships: Various gas chromatographic retention behaviors of polychlorinated dibenzofurans on different polarity-varying stationary phases. Chinese Science Bulletin, 50, 1683–1687. DOI: 10.1360/982004-252. http://dx.doi.org/10.1360/982004-25210.1360/982004-252Suche in Google Scholar

[4] Evans, M. B. (1978). Gas chromatography in qualitative analysis. Part 14. Molecular retention index as an alternative system for the characterization of gas chromatographic stationary phases. Chromatographia, 11, 183–187. DOI: 10.1007/BF02302389. http://dx.doi.org/10.1007/BF0230238910.1007/BF02302389Suche in Google Scholar

[5] Harju, M., Andersson, P. L., Haglund, P., & Tysklind, M. (2002). Multivariate physicochemical characterization and quantitative structure-property relationship modeling of polybrominated diphenyl ethers. Chemosphere, 47, 375–384. DOI: 10.1016/S0045-6535(01)00339-3. http://dx.doi.org/10.1016/S0045-6535(01)00339-310.1016/S0045-6535(01)00339-3Suche in Google Scholar

[6] Ivanciuc, T., & Ivanciuc, O. (2002). Quantitative structure-retention relationship study of gas chromatographic retention indices for halogenated compounds. Internet Electronic Journal of Molecular Design, 1, 94–107. Suche in Google Scholar

[7] Jalali-Heravi, M., Noroozian, E., & Mousavi, M. (2004). Prediction of relative response factors of electron-capture detection for some polychlorinated biphenyls using chemometrics. Journal of Chromatography A, 1023, 247–254. DOI: 10.1016/j.chroma.2003.10.012. http://dx.doi.org/10.1016/j.chroma.2003.10.01210.1016/j.chroma.2003.10.012Suche in Google Scholar

[8] Jönsson, J. A. (1987). Chromatographic theory and basic principles. New York, NY, USA: Marcel Dekker. Suche in Google Scholar

[9] Kaliszan, R. (1987). Quantitative structure-chromatographic retention relationship. New York, NY, USA: Wiley. Suche in Google Scholar

[10] Kato, H., Ueda, Y., & Nakata, M. (2000). Calibration method for the gas-chromatographic retention time of polychlorinated biphenyl congeners. Analytical Sciences, 16, 693–699. DOI: 10.2116/analsci.16.693. http://dx.doi.org/10.2116/analsci.16.69310.2116/analsci.16.693Suche in Google Scholar

[11] Korytár, P., Covaci, A., de Boer, J., Gelbin, A., & Brinkman, U. A. Th. (2005). Retention-time database of 126 poly-brominated diphenyl ether congeners and two Bromkal technical mixtures on seven capillary gas chromatographic columns. Journal of Chromatography A, 1065, 239–249. DOI: 10.1016/j.chroma.2004.12.059. http://dx.doi.org/10.1016/j.chroma.2004.12.05910.1016/j.chroma.2004.12.059Suche in Google Scholar

[12] Krawczuk, A., Voelkel, A., Lulek, J., Urbaniak, R., & Szyrwińska, K. (2003). Use of topological indices of polychlorinated biphenyls in structure-retention relationships. Journal of Chromatography A, 1018, 63–71. DOI: 10.1016/j.chroma.2003.08.037. http://dx.doi.org/10.1016/j.chroma.2003.08.03710.1016/j.chroma.2003.08.037Suche in Google Scholar

[13] Liang, X., Wang, W., Schramm, K.-W., Zhang, Q., Oxynos, K., Henkelmann, B., & Kettrup, A. (2000). A new method of predicting of gas chromatographic retention indices for polychlorinated dibenzofurans (PCDFs). Chemosphere, 41, 1889–1895. DOI: 10.1016/S0045-6535(00)00052-7. http://dx.doi.org/10.1016/S0045-6535(00)00052-710.1016/S0045-6535(00)00052-7Suche in Google Scholar

[14] Liu, S. S., Yin, C. S., & Wang, L. S. (2002). MEDV-13 for QSRR of 62 polychlorinated naphthalenes. Chinese Chemical Letters, 13, 791–794. Suche in Google Scholar

[15] Moustafa, N. E. (2009). Gas chromatographic retention times prediction for components of petroleum condensate fraction. Chemical Papers, 63, 608–612. DOI: 10.2478/s11696-009-0045-3. http://dx.doi.org/10.2478/s11696-009-0045-310.2478/s11696-009-0045-3Suche in Google Scholar

[16] Olivero, J., & Kannan, K. (1999). Quantitative structure-retention relationships of polychlorinated naphthalenes in gas chromatography. Journal of Chromatography A, 849, 621–627. DOI: 10.1016/S0021-9673(99)00402-1. http://dx.doi.org/10.1016/S0021-9673(99)00402-110.1016/S0021-9673(99)00402-1Suche in Google Scholar

[17] Rybolt, T. R., Logan, D. L., Milbrun, M. W., Thomas, H. E., & Waters, A. B. (1999). Correlations of Henry’s law gas-solid virial coefficients and chromatographic retention times for hydrocarbons and halocarbons adsorbed on carbopack C carbon. Journal of Colloid and Interface Science, 220, 148–156. DOI: 10.1006/jcis.1999.6522. http://dx.doi.org/10.1006/jcis.1999.652210.1006/jcis.1999.6522Suche in Google Scholar

[18] Santiuste, J. M., Harangi, J., & Takács, J. M. (2003). Mosaic increments for predicting the gas chromatographic retention data of the chlorobenzenes. Journal of Chromatography A, 1002, 155–168. DOI: 10.1016/S0021-9673(03)00736-2. http://dx.doi.org/10.1016/S0021-9673(03)00736-210.1016/S0021-9673(03)00736-2Suche in Google Scholar

[19] Santiuste, J. M., & Takács, J. M. (2003). Relationships between retention data of benzene and chlorobenzenes with their physico-chemical properties and topological indices. Chromatographia, 58, 87–96. DOI: 10.1365/s10337-003-0013-y. Suche in Google Scholar

[20] Sielex, K., & Andersson, J. T. (2000). Prediction of gas chromatographic retention indices of polychlorinated dibenzothiophenes on non-polar columns. Journal of Chromatography A, 866, 105–120. DOI: 10.1016/S0021-9673(99)01079-1. http://dx.doi.org/10.1016/S0021-9673(99)01079-110.1016/S0021-9673(99)01079-1Suche in Google Scholar

[21] van Deemter, J. J., Zuiderweg, F. J., & Klinkenberg, A. (1956). Longitudinal diffusion and resistance to mass transfer as causes of non ideality in chromatography. Chemi cal Engineering Science, 5, 271–289. DOI: 10.1016/0009-2509(56)80003-1. 10.1016/0009-2509(56)80003-1Suche in Google Scholar

[22] Wang, D., Xu, X., Chu, S., & Zhang, D. (2003). Analysis and structure prediction of chlorinated polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride. Chemosphere, 53, 495–503. DOI: 10.1016/S0045-6535(03) 00507-1. http://dx.doi.org/10.1016/S0045-6535(03)00507-110.1016/S0045-6535(03)00507-1Suche in Google Scholar

[23] Wang, H., Wang, X., Zhao, J., Sun, C., & Wang, L. (2005). Holographic QSRR of polychlorinated dibenzofurans. Chinese Science Bulletin, 50, 961–964. DOI: 10.1360/04wb0094. http://dx.doi.org/10.1360/04wb009410.1360/04wb0094Suche in Google Scholar

[24] Wang, Y., Li, A., Liu, H., Zhang, Q., Ma, W., Song, W., & Jiang, G. (2006). Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Journal of Chromatography A, 1103, 314–328. DOI: 10.1016/j.chroma.2005.11.034. http://dx.doi.org/10.1016/j.chroma.2005.11.03410.1016/j.chroma.2005.11.034Suche in Google Scholar PubMed

[25] Wawrzyniak, R. (2009). Quantitative relationship and application of 3-benzylketoimine metal dichlorides in the analysis of volatile hydrocarbons. Journal of Separation Science, 32, 1415–1424. DOI: 10.1002/jssc.200800616. http://dx.doi.org/10.1002/jssc.20080061610.1002/jssc.200800616Suche in Google Scholar PubMed

[26] Wawrzyniak, R., & Wasiak, W. (2005). Ketoimine modified silica as an adsorbent for gas chromatographic analysis of olefins. Journal of Separation Science, 28, 2454–2462. DOI: 10.1002/jssc.200400035. http://dx.doi.org/10.1002/jssc.20040003510.1002/jssc.200400035Suche in Google Scholar PubMed

[27] Wawrzyniak, R., & Wasiak, W. (2004). Silica modified with ketoimine group-containing silane as an adsorbent in capillary columns. Chromatographia, 59, 205–211. DOI: 10.1365/s10337-003-157-9. Suche in Google Scholar

[28] Wawrzyniak, R., & Wasiak, W. (2003). New method for bonding an adsorbent film to the walls of capillary columns. Journal of Separation Science, 26, 1219–1224. DOI: 10.1002/jssc.200301430. http://dx.doi.org/10.1002/jssc.20030143010.1002/jssc.200301430Suche in Google Scholar

[29] Zenkevich, I. G. (2001). Interpretation of retention indices in gas chromatography for establishing structures of isomeric products of alkylarenes radical chlorination. Russian Journal of Organic Chemistry, 37, 270–280. DOI: 10.1023/A:1012343416008. http://dx.doi.org/10.1023/A:101234341600810.1023/A:1012343416008Suche in Google Scholar

[30] Zhai, Z.-C., Wang, Z.-Y., & Chen, S.-D. (2006). Quantitative structure-retention relationship for gas chromatography of polychlorinated naphthalenes by ab initio quantummechanical calculations and a Cl substitution position method. QSAR & Combinatorial Science, 25, 7–14. DOI: 10.1002/qsar.200530111. http://dx.doi.org/10.1002/qsar.20053011110.1002/qsar.200530111Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0060-z/pdf?lang=de
Button zum nach oben scrollen