Home Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
Article
Licensed
Unlicensed Requires Authentication

Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery

  • Filippo Rossi EMAIL logo , Tommaso Casalini , Marco Santoro , Andrea Mele and Giuseppe Perale
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

A number of studies and works in drug delivery literature are focused on the understanding and modelling of transport phenomena, the pivotal point of a good scaffold design for tissue engineering. Accurate knowledge of the diffusion coefficient of an active drug plays a key role in the analysis, prediction of their kinetics and formulation of efficient drug delivery systems. In this work, the kinetics of the release of methylprednisolone from agar-Carbomer hydrogel were studied taking into consideration the different drug concentrations and clearances typically achieved in in vitro or in vivo tests. Starting from the experiments it is possible to model the transport phenomenon and to calculate the diffusion coefficient through the hydrogel matrix.

[1] Alexis, F. (2005). Factors affecting the degradation and drugrelease mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54, 36–46. DOI: 10.1002/pi.1697. http://dx.doi.org/10.1002/pi.169710.1002/pi.1697Search in Google Scholar

[2] Arosio, P., Xie, D., Wu, H., Braun, L., & Morbidelli, M. (2010). Effect of primary particle morphology on the structure of gels formed in intense turbulent shear. Langmuir, 26, 6643–6649. DOI 10.1021/La9039754. http://dx.doi.org/10.1021/la903975410.1021/la9039754Search in Google Scholar

[3] Badylak, S. F., & Nerem, R. M. (2010). Progress in tissue engineering and regenerative medicine. Proceedings of the National Academy of Sciences of the United States of America, 107, 3285–3286. DOI: 10.1073/pnas.1000256107. http://dx.doi.org/10.1073/pnas.100025610710.1073/pnas.1000256107Search in Google Scholar

[4] Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213. DOI: 10.1016/j.jconrel.2009.05.009. http://dx.doi.org/10.1016/j.jconrel.2009.05.00910.1016/j.jconrel.2009.05.009Search in Google Scholar

[5] Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., Eisenberg, H. M., Flamm, E., Leo-Summers, L., Maroon, J., Marshall, L. F., Perot, P. L., Jr., Piepmeier, J., Sonstag, V. K. H., Wagner, F. C., Wilberger, J. E., & Winn, H. R. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. New England Journal of Medicine, 322, 1405–1411. http://dx.doi.org/10.1056/NEJM19900517322200110.1056/NEJM199005173222001Search in Google Scholar

[6] Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., Fehlings, M., Herr, D. L., Hitchon, P. W., Marshall, L. F., Nockels, R. P., Pascale, V., Perot, P. L., Jr., Piepmeier, J., Sonntag, V. K. H., Wagner, F., Wilberger, J. E., Winn, H. R., & Young, W. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. The Journal of the American Medical Association, 277, 1597–1604. DOI: 10.1001/jama.1997.03540440031029. http://dx.doi.org/10.1001/jama.277.20.159710.1001/jama.1997.03540440031029Search in Google Scholar

[7] Cao, K., Huang, L., Liu, J., An, H., Shu, Y., & Han, Z. (2010). Inhibitory effects of high-dose methylprednisolone on bacterial translocation from gut and endotoxin release following acute spinal cord injury-induced paraplegia in rats. Neural Regeneration Research, 5, 456–460. DOI: 10.3969/j.issn.1673-5374.2010.06.009 Search in Google Scholar

[8] Claußen, S., Janich, M., & Neubert, R. (2003). Light scattering investigations on freeze-dried glucocorticoids in aqueous solution. International Journal of Pharmaceutics, 252, 267–270. DOI: 10.1016/S0378-5173(02)00600-2. http://dx.doi.org/10.1016/S0378-5173(02)00600-210.1016/S0378-5173(02)00600-2Search in Google Scholar

[9] Crank, J. (1975). The mathematics of diffusion. Oxford, UK: Clarendon Press. Search in Google Scholar

[10] Falk, B., Garramone, S., & Shivkumar, S. (2004). Diffusion coefficient of paracetamol in a chitosan hydrogel. Materials Let ters, 58, 3261–3265. DOI: 10.1016/j.matlet.2004.05.072. http://dx.doi.org/10.1016/j.matlet.2004.05.07210.1016/j.matlet.2004.05.072Search in Google Scholar

[11] Hejčl, A., Šedý, J., Kapcalová, M., Toro, D. A., Amemori, T., Lesný, P., Likavčanová-Mašínová, K., Krumbholcová, E., Přádný, M., Michálek, J., Burian, M., Hájek, M., Jendelová, P., & Syková, E. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 19, 1535–1546. DOI: 10.1089/scd.2009.0378. http://dx.doi.org/10.1089/scd.2009.037810.1089/scd.2009.0378Search in Google Scholar PubMed

[12] Johansson, L., Skantze, U., & Loefroth, J. E. (1991). Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect. Macromolecules, 24, 6019–6023. DOI: 10.1021/ma00022a018. http://dx.doi.org/10.1021/ma00022a01810.1021/ma00022a018Search in Google Scholar

[13] Katz, J. S., & Burdick, J. A. (2009). Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 128–139. DOI: 10.1002/wnan.010. http://dx.doi.org/10.1002/wnan.10Search in Google Scholar

[14] Kim, Y.-T., Caldwell, J.-M., & Bellamkonda, R. V. (2009). Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials, 30, 2582–2590. DOI: 10.1016/j.biomaterials.2008.12.077. http://dx.doi.org/10.1016/j.biomaterials.2008.12.07710.1016/j.biomaterials.2008.12.077Search in Google Scholar PubMed PubMed Central

[15] Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926. DOI: 10.1126/science.8493529. http://dx.doi.org/10.1126/science.849352910.1126/science.8493529Search in Google Scholar PubMed

[16] Lanza, R. P., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering (2nd ed.). Academic Press. Search in Google Scholar

[17] Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58, 1379–1408. DOI: 10.1016/j.addr.2006.09.004. http://dx.doi.org/10.1016/j.addr.2006.09.00410.1016/j.addr.2006.09.004Search in Google Scholar PubMed

[18] Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143, 175–182. DOI: 10.1016/j.jconrel.2009.12.030. http://dx.doi.org/10.1016/j.jconrel.2009.12.03010.1016/j.jconrel.2009.12.030Search in Google Scholar PubMed

[19] Mouriño, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 7, 209–227. DOI: 10.1098/rsif.2009.0379. http://dx.doi.org/10.1098/rsif.2009.037910.1098/rsif.2009.0379Search in Google Scholar PubMed PubMed Central

[20] Perale, G., Arosio, P., Moscatelli, D., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2009). A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional model. Journal of Controlled Release, 136, 196–205. DOI: 10.1016/j.jconrel.2009.02.014 http://dx.doi.org/10.1016/j.jconrel.2009.02.01410.1016/j.jconrel.2009.02.014Search in Google Scholar PubMed

[21] Perale, G., Casalini, T., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2010). Lidocaine release from polycaprolactone threads. Journal of Applied Polymer Science, 117, 3610–3614. DOI: 10.1002/app.32262. 10.1002/app.32262Search in Google Scholar

[22] Perale, G., Giordano, C., Bianco, F., Rossi, F., Tunesi, M., Daniele, F., Crivelli, F., Matteoli, M., & Masi, M. (2011a). Hydrogel for cell housing in the brain and in the spinal cord. International Journal of Artificial Organs, 34, 295–303. DOI: 10.5301/IJAO.2011.6488. http://dx.doi.org/10.5301/IJAO.2011.648810.5301/IJAO.2011.6488Search in Google Scholar PubMed

[23] Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., & Veglianese, P. (2011b). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345. DOI: 10.1021/cn200030w. http://dx.doi.org/10.1021/cn200030w10.1021/cn200030wSearch in Google Scholar PubMed PubMed Central

[24] Perale, G., Veglianese, P., Rossi, F., Peviani, M., Santoro, M., Llupi, D., Micotti, E., Forloni, G., & Masi, M. (2011c). In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 65, 1688–1692. DOI: 10.1016/j.matlet.2011.02.036. http://dx.doi.org/10.1016/j.matlet.2011.02.03610.1016/j.matlet.2011.02.036Search in Google Scholar

[25] Rossi, F., Chatzistavrou, X., Perale, G., & Boccaccini, A. R. (2011). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science. (in press) Search in Google Scholar

[26] Rossi, F., Perale, G., & Masi, M. (2010). Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chemical Papers, 64, 573–578. DOI: 10.2478/s11696-010-0052-4. http://dx.doi.org/10.2478/s11696-010-0052-410.2478/s11696-010-0052-4Search in Google Scholar

[27] Sakurada, K., McDonald, F. M., & Shimada, F. (2008). Regenerative medicine and stem cell based drug discovery. Angewandte Chemie-International Edition, 47, 5718–5738. DOI: 10.1002/anie.200700724. http://dx.doi.org/10.1002/anie.20070072410.1002/anie.200700724Search in Google Scholar

[28] Sant, S., Thommes, M., & Hildgen, P. (2008). Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir, 24, 280–287. DOI: 10.1021/la702244w. http://dx.doi.org/10.1021/la702244w10.1021/la702244wSearch in Google Scholar

[29] Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). A smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394. http://dx.doi.org/10.1021/jp111139410.1021/jp1111394Search in Google Scholar

[30] Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901530r. http://dx.doi.org/10.1021/ma901530r10.1021/ma901530rSearch in Google Scholar

[31] Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106. http://dx.doi.org/10.1002/adma.20080210610.1002/adma.200802106Search in Google Scholar

[32] Stella, V. J., Lee, H. K., & Thompson, D. O. (1995). The effect of SBE4-β-cd on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two watersoluble prodrugs. International Journal of Pharmaceutics, 120, 189–195. DOI: 10.1016/0378-5173(94)00404-S. http://dx.doi.org/10.1016/0378-5173(94)00404-S10.1016/0378-5173(94)00404-SSearch in Google Scholar

[33] Tan, H., Ramirez, C. M., Miljkovic, N., Li, H., Rubin, J. P., & Marra, K. G. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30, 6844–6853. DOI: 10.1016/J.Biomaterials.2009.08.058. http://dx.doi.org/10.1016/j.biomaterials.2009.08.05810.1016/j.biomaterials.2009.08.058Search in Google Scholar PubMed PubMed Central

[34] Tang, Y., Zhao, Y., Li, Y., & Du, Y. (2010). A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polymer Bulletin, 64, 791–804. DOI: 10.1007/s00289-009-0214-0. http://dx.doi.org/10.1007/s00289-009-0214-010.1007/s00289-009-0214-0Search in Google Scholar

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0059-5/pdf?lang=en
Scroll to top button