Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
-
Natarajan Raman
, Ramaraj Jeyamurugan
Abstract
A novel series of Co(II), Ni(II), Cu(II), Zn(II), and VO(IV) complexes has been synthesized from the Schiff base derived from 4-[(3,4-dimethoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one and 1,2-diaminobenzene. Structural features were determined by analytical and spectral techniques. Binding of synthesized complexes with calf thymus DNA (CT DNA) was studied by spectroscopic methods and viscosity measurements. Experimental results indicate that the complexes are able to form adducts with DNA and to distort the double helix by changing the base stacking. Lower DNA affinity of the VO(IV) complex is caused by the change of coordination geometry by the vanadyl ion resulting in a somewhat unfavorable configuration for the DNA binding. Oxidative DNA cleavage activities of the complexes were studied with supercoiled (SC) pUC19 DNA using gel electrophoresis; the mechanism studies revealed that the hydroxyl radical is likely to be the reactive species responsible for the cleavage of pUC19 DNA by the synthesized complexes. The in vitro antimicrobial screening effects of the investigated compounds were monitored by the disc diffusion method. The synthesized Schiff base complexes exhibit higher antimicrobial activity than the respective free Schiff base.
[1] Angelici, R. J. (1969). Synthesis and techniques in inorganic chemistry. Philadelphia, PA, USA: W.B. Saunders Company. Suche in Google Scholar
[2] Anjaneyulu, Y., & Rao, R. P. (1986). Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 16, 257–272. DOI: 10.1080/00945718608057530. http://dx.doi.org/10.1080/0094571860805753010.1080/00945718608057530Suche in Google Scholar
[3] Dharmaraj, N., Viswanathamurthi, P., & Natarajan, K. (2001). Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Metal Chemistry, 26, 105–109. DOI: 10.1023/A:1007132408648. http://dx.doi.org/10.1023/A:100713240864810.1023/A:1007132408648Suche in Google Scholar
[4] Dodwad, S. S., Dhamnaskar, R. S., & Prabhu, P. S. (1989). Electron spin resonance spectral studies of vanadyl complexes with some Schiff bases. Polyhedron, 8, 1748–1750. DOI: 10.1016/S0277-5387(00)80629-4. http://dx.doi.org/10.1016/S0277-5387(00)80629-410.1016/S0277-5387(00)80629-4Suche in Google Scholar
[5] Dudley, R. J., & Hathaway, B. J. (1970). Single-crystal electronic and e.s.r. spectra of bis-(aquo)monoaceylacetonato-copper( II) picrate. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970, 1725–1728. DOI: 10.1039/J19700001725. http://dx.doi.org/10.1039/j1970000172510.1039/j19700001725Suche in Google Scholar
[6] Firdaus, F., Fatma, K., Azam, M., Khan, S. N., Khan, A. U., & Shakir, M. (2009). Template synthesis and physico-chemical characterisation of 14-membered tetramine macrocyclic complexes, [MLX2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. DNA binding study on [CoLCl2] complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 591–596. DOI: 10.1016/j.saa.2008.10.054. http://dx.doi.org/10.1016/j.saa.2008.10.05410.1016/j.saa.2008.10.054Suche in Google Scholar
[7] Kannan, N. (1996). Laboratory manual of general microbiology (1st ed.). Palani, India: Palani Paramount Publications. Suche in Google Scholar
[8] Lever, A. B. P. (1968). Inorganic electronic spectroscopy (2nd ed.). New York, NY, USA: Elsevier. Suche in Google Scholar
[9] Lu, X., Zhu, K., Zhang, M., Liu, H., & Kang, J. (2002). Voltammetric studies of the interaction of transition-metal complexes with DNA. Journal of Biochemical Biophysical Methods, 52, 189–200. DOI: 10.1016/S0165-022X(02)00074-X. http://dx.doi.org/10.1016/S0165-022X(02)00074-X10.1016/S0165-022X(02)00074-XSuche in Google Scholar
[10] Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganism. Journal of Molecular Biology, 3, 208–218. http://dx.doi.org/10.1016/S0022-2836(61)80047-810.1016/S0022-2836(61)80047-8Suche in Google Scholar
[11] Mitsopoulou, C. A., Dagas, C. E., & Makedonas, C. (2008). Synthesis, characterization, DFT studies and DNA binding of mixed platinum(II) complexes containing quinoxaline and 1,2-dithiolate ligands. Journal of Inorganic Biochemistry, 102, 77–86. DOI: 10.1016/j.jinorgbio.2007.07.002. http://dx.doi.org/10.1016/j.jinorgbio.2007.07.00210.1016/j.jinorgbio.2007.07.002Suche in Google Scholar PubMed
[12] Perrin, D. D., Armarego, W. L. F., & Perrin, D. R. (1980). Purification of laboratory chemicals. Oxford, UK: Pergamon Press. Suche in Google Scholar
[13] Priya, N. P., Arunachalam, S., Manimaran, A., Muthupriya, D., & Jayabalakrishnan, C. (2009). Mononuclear Ru(III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 670–676. DOI: 10.1016/j.3saa.2008.10.028. http://dx.doi.org/10.1016/j.saa.2008.10.028Suche in Google Scholar
[14] Raman, N., Dhaveethu Raja, J., & Sakthivel, A. (2008). Design, synthesis, spectroscopic characterization, biological screening, and DNA nuclease activity of transition metal complexes derived from a tridentate Schiff base. Russian Journal of Coordination Chemistry, 34, 400–406. DOI: 10.1134/S107032840806002X. http://dx.doi.org/10.1134/S107032840806002X10.1134/S107032840806002XSuche in Google Scholar
[15] Raman, N., & Jeyamurugan, R. (2009). Synthesis, characterization and DNA interaction of mononuclear copper(II) and zinc(II) complexes having a hard-soft NS donor ligand. Journal of Coordination Chemistry, 62, 2375–2387. DOI: 10.1080/00958970902825195. http://dx.doi.org/10.1080/0095897090282519510.1080/00958970902825195Suche in Google Scholar
[16] Raman, N., Sakthivel, A., & Rajasekaran, K. (2009). Designing, structural elucidation, DNA interaction and antimicro bial activities of metal complexes containing tetraazamacrocyclic Schiff bases. Journal of Coordination Chemistry, 62, 1661–1676. DOI: 10.1080/00958970802687554. http://dx.doi.org/10.1080/0095897080268755410.1080/00958970802687554Suche in Google Scholar
[17] Ray, R. K., & Kauffman, G. B. (1990). EPR spectra and covalency of bis(amidinourea/O-alkyl-1-amidinourea)copper(II) complexes. Part II. Properties of the CuN 42− chromophore. Inorganica Chimica Acta, 173, 207–214. DOI: 10.1016/S0020-1693(00)80215-7. http://dx.doi.org/10.1016/S0020-1693(00)80215-710.1016/S0020-1693(00)80215-7Suche in Google Scholar
[18] Reichmann, M. E., Rice, S. A., Thomas, C. A., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76, 3047–3053. DOI: 10.1021/ja01640a067. http://dx.doi.org/10.1021/ja01640a06710.1021/ja01640a067Suche in Google Scholar
[19] Satyanarayana, S., Dabrowiak, J. C., & Chaires, J. B. (1993). Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry, 32, 2573–2584. DOI: 10.1021/bi00061a015. http://dx.doi.org/10.1021/bi00061a01510.1021/bi00061a015Suche in Google Scholar PubMed
[20] Sharada, L. N., & Syamal, A. (1992). Elements of magnetochemistry (2nd ed.). New Delhi, India: East-West Press. Suche in Google Scholar
[21] Sigel, H. (1973). In Sigel, H. (Ed.), Metal ions in biological systems. (Vol. 2: Mixed-ligand complexes, pp. 63–125). New York, NY, USA: Marcel Dekker. Suche in Google Scholar
[22] Terenzi, A., Barone, G., Silvestri, A., Giuliani, A. M., Ruggirello, A., & Liveri, V. T. (2009). The interaction of native calf thymus DNA with FeIII-dipyrido[3,2-a:2′,3′-c]phenazine. Journal of Inorganic Biochemistry, 103, 1–9. DOI: 10.1016/j.jinorgbio.2008.08.011. http://dx.doi.org/10.1016/j.jinorgbio.2008.08.01110.1016/j.jinorgbio.2008.08.011Suche in Google Scholar PubMed
[23] Wang, Q.-X., Jiao, K., Liu, F.-Q., Yuan, X.-L., & Sun, W. (2007). Spectroscopic, viscositic and electrochemical studies of DNA interaction with a novel mixed-ligand complex of nickel(II) that incorporates 1-methylimidazole and thiocyanate groups. Journal of Biochemical Biophysical Methods, 70, 427–433. DOI: 10.1016/j.jbbm.2006.09.011. http://dx.doi.org/10.1016/j.jbbm.2006.09.01110.1016/j.jbbm.2006.09.011Suche in Google Scholar PubMed
[24] Yen, T. F. (1969). Electron spin resonance of metal chelates (1st ed.). New York, NY, USA: Plenum Press. 10.1007/978-1-4684-8323-9Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Artikel in diesem Heft
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product