Abstract
This paper describes two isotachophoretic methods of metoprolol tartrate (MT) determination in pure and dosage forms. The first method was used for direct analysis where the following electrolyte system was applied: 10 mmol dm−3 3-morpholino-2-hydroxypropanesulfonic acid, 10 mmol dm−3 NaCl, 2 % hydroxyethylocelulose as leading (LE) and 10 mmol dm−3 glycyl-glycine as terminating (TE) electrolytes. The second method was used for indirect analysis of MT as tartrate ions. In this case, the leading electrolyte consisted of 10 mmol dm−3 HCl, β-alanine (BALA), pH 4-5, and the terminating one of 5 mmol dm−3 glutamic acid, 10 mmol dm−3 β-alanine. Calibration curves were calculated as follows: for system A: y = (0.52 ± 0.05)x − (0.9 ± 0.2) (LOD = 13.0 mg dm−3, LOQ = 31.7 mg dm−3); and for system B: y = (0.240 +- 0.001)x + (0.18 ± 0.06) (LOD = 1.8 mg dm−3, LOQ = 4.4 mg dm−3). The isotachophoretic method was compared with the pharmacopoeial one by statistical tests.
[1] Albers, S., Elshoff, J.-P., Völker, C., Richter, A., & Läer, S. (2005). HPLC quantification of metoprolol with solidphase extraction for the drug monitoring of pediatric patients. Biomedical Chromatography, 19, 202–207. DOI: 10.1002/bmc.436. http://dx.doi.org/10.1002/bmc.43610.1002/bmc.436Search in Google Scholar
[2] Alpdoǧgan, G., & Sungur, S. (1999). AAS and spectrophotometric methods for the determination metoprolol tartrate in tablets. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 2705–2709. DOI: 10.1016/S1386-1425(99)00121-3. http://dx.doi.org/10.1016/S1386-1425(99)00121-310.1016/S1386-1425(99)00121-3Search in Google Scholar
[3] British Pharmacopoeia Commission (2005). British pharmacopoeia. London, UK: The Stationery Office. Search in Google Scholar
[4] Čakrt, M., Hercegová, A., Leško, J., Polonský, J., Sádecká, J., & Skačáni, I. (2001). Isotachophoretic determination of naproxen in the presence of its metabolite in human serum. Journal of Chromatography A, 916, 207–214. DOI: 10.1016/S0021-9673(00)01071-2. http://dx.doi.org/10.1016/S0021-9673(00)01071-210.1016/S0021-9673(00)01071-2Search in Google Scholar
[5] El-Ries, M. A., Abou Attia, F. M., & Ibrahim, S. A. (2000). AAS and spectrophotometric determination of propranolol HCl and metoprolol tartrate. Journal of Pharmaceutical and Biomedical Analysis, 24, 179–187. DOI: 10.1016/S0731-7085(00)00408-8. http://dx.doi.org/10.1016/S0731-7085(00)00408-810.1016/S0731-7085(00)00408-8Search in Google Scholar
[6] Everaerts, F. M., Beckers, J. L., & Verheggen, T. P. E. M. (1976). Isotachophoresis, theory, instrumentation and applications. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar
[7] Fang, J., Semple, H. A., & Song, J. (2004). Determination of metoprolol, and its four metabolites in dog plasma. Journal of Chromatography B, 809, 9–14. DOI: 10.1016/j.jchromb.2004.05.029. http://dx.doi.org/10.1016/j.jchromb.2004.05.02910.1016/j.jchromb.2004.05.029Search in Google Scholar
[8] Gowda, K. V., Mandal, U., Selvan, P. S., Solomon, W. D. S., Ghosh, A., Sarkar, A. K., Agarwal, S., Rao, T. N., & Pal, T. K. (2007). Liquid chromatography tandem mass spectrometry method for simultaneous determination of metoprolol tartrate and ramipril in human plasma. Journal of Chromatography B, 858, 13–21. DOI: 10.1016/j.jchromb.2007.07.047. http://dx.doi.org/10.1016/j.jchromb.2007.07.04710.1016/j.jchromb.2007.07.047Search in Google Scholar
[9] Hernández, M., Aguilar, C., Borrull, F., & Calull, M. (2002). Determination of ciprofloxacin, enrofloxacin and flumequine in pig plasma samples by capillary isotachophoresis-capillary zone electrophoresis. Journal of Chromatography B, 772, 163–172. DOI: 10.1016/S1570-0232(02)00071-5. http://dx.doi.org/10.1016/S1570-0232(02)00071-510.1016/S1570-0232(02)00071-5Search in Google Scholar
[10] Kim, K. H., Kim, H. J., Kang, J.-S., & Mar, W. (2000). Determination of metoprolol enantiomers in human urine by coupled achiral-chiral chromatography. Journal of Pharmaceutical and Biomedical Analysis, 22, 377–384. DOI: 10.1016/S0731-7085(99)00279-4. http://dx.doi.org/10.1016/S0731-7085(99)00279-410.1016/S0731-7085(99)00279-4Search in Google Scholar
[11] Klein, H., & Teichmann, R. (1982). Isotachophoretic assay of aminoglycosides and lincomycins in pharmaceuticals. Journal of Chromatography A, 250, 152–156. DOI: 10.1016/S0021-9673(00)95228-2. http://dx.doi.org/10.1016/S0021-9673(00)95228-210.1016/S0021-9673(00)95228-2Search in Google Scholar
[12] Kurzawa, M., Jastrzčebska, A., & Szłyk, E. (2009). Application of isotachophoretic and conductometric methods for neomycin trisulphate determination. Chemical Papers, 63, 255–260. DOI: 10.2478/s11696-008-0103-2. http://dx.doi.org/10.2478/s11696-008-0103-210.2478/s11696-008-0103-2Search in Google Scholar
[13] Kurzawa, M., Jastrzčebska, A., & Szłyk, E. (2005). Indirect determination of neomycin trisulphate as sulphate by column coupling capillary isotachophoresis. Acta Poloniae Pharmaceutica — Drug Research, 62, 163–169. Search in Google Scholar
[14] Li, Q., & Wang, R. (2006). Simultaneous analysis of tramadol, metoprolol and their metabolites in human plasma and urine by high performance liquid chromatography. Chinese Medical Journal, 119, 2013–2017. 10.1097/00029330-200612010-00012Search in Google Scholar
[15] Liu, H., Ren, J., Hao, Y., Ding, H., He, P., & Fang, Y. (2006). Determination of metoprolol tartrate in tablets and human urine using flow-injection chemiluminescence method. Journal of Pharmaceutical and Biomedical Analysis, 42, 384–388. DOI: 10.1016/j.jpba.2006.04.008. http://dx.doi.org/10.1016/j.jpba.2006.04.00810.1016/j.jpba.2006.04.008Search in Google Scholar
[16] Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry. Harrow, UK: Pearson Education/Prentice-Hall. Search in Google Scholar
[17] Mistry, B., Leslie, J., & Eddington, N. E. (1998). A sensitive assay of metoprolol and its major metabolite α-hydroxy metoprolol in human plasma and determination of dextromethorphan and its metabolite dextrorphan in urine with high performance liquid chromatography and fluorometric detection. Journal of Pharmaceutical and Biomedical Analysis, 16, 1041–1049. DOI: 10.1016/S0731-7085(97)00115-5. http://dx.doi.org/10.1016/S0731-7085(97)00115-510.1016/S0731-7085(97)00115-5Search in Google Scholar
[18] Polášek, M., Pospíšilová, M., & Urbánek, M. (2000). Capillary isotachophoretic determination of flufenamic, mefenamic, niflumic and tolfenamic acid in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 23, 135–142. DOI: 10.1016/S0731-7085(00)00283-1. http://dx.doi.org/10.1016/S0731-7085(00)00283-110.1016/S0731-7085(00)00283-1Search in Google Scholar
[19] Pospíšilová, M., Polášek, M., & Jokl, V. (1998). Separation and determination of sorbitol and xylitol in multi-component pharmaceutical formulations by capillary isotachophoresis. Journal of Pharmaceutical and Biomedical Analysis, 17, 387–392. DOI: 10.1016/S0731-7085(98)00046-6. http://dx.doi.org/10.1016/S0731-7085(98)00046-610.1016/S0731-7085(98)00046-6Search in Google Scholar
[20] Pospíšilová, M., Polášek, M., & Procházka, J. (1997). Separation and determination of pharmaceutically important polyols in dosage forms by capillary isotachophoresis. Journal of Chromatography A, 772, 277–282. DOI: 10.1016/S0021-9673(96)00862-X. http://dx.doi.org/10.1016/S0021-9673(96)00862-X10.1016/S0021-9673(96)00862-XSearch in Google Scholar
[21] Sádecká, J., Čakrt, M., Hercegová, A., Polonský, J., & Skačáni, I. (2001). Determination of ibuprofen and naproxen in tablets. Journal of Pharmaceutical and Biomedical Analysis, 25, 881–891. DOI: 10.1016/S0731-7085(01)00374-0. http://dx.doi.org/10.1016/S0731-7085(01)00374-010.1016/S0731-7085(01)00374-0Search in Google Scholar
[22] Sádecká, J., & Polonský, J. (1996). Determination of some cardiovascular drugs in serum and urine by capillary isotachophoresis. Journal of Chromatography A, 735, 403–408. DOI: 10.1016/0021-9673(95)00722-9. http://dx.doi.org/10.1016/0021-9673(95)00722-910.1016/0021-9673(95)00722-9Search in Google Scholar
[23] Valášková, I., Balážová, J., & Havránek, E. (1995). Monitoring of lithium levels in human serum after therapy with lithium preparations by capillary isotachophoresis. Journal of Chromatography B, 674, 310–313. DOI: 10.1016/0378-4347(95)00326-6. http://dx.doi.org/10.1016/0378-4347(95)00326-610.1016/0378-4347(95)00326-6Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Articles in the same Issue
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product