Startseite Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+

  • Martin Šramko EMAIL logo , Július Šille , Pavol Ježko und Vladimír Garaj
Veröffentlicht/Copyright: 31. März 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Becke3LYP density functional was used to study structural and thermodynamic parameters of bivalent zinc cation complexes with selected substrates and ACE inhibitors (H2O/OH−, neutral forms of captopril, zofenoprilat, omapatrilat, CH3CONHCH3, and N-terminal anions of captopril, zofenoprilat, omapatrilat, enalaprilat, perindoprilat, trandolaprilat, and fosinoprilat). The combination of DFT and the conductor-like polarizable continuum model (CPCM) were employed to compute the Gibbs interaction energies (ΔG) between Zn2+ and the selected ACE inhibitors for dielectric media with ɛ = 5 (to simulate the protein environment) and for water media (ɛ = 78.39) for comparison purposes. The results show that ΔG is sensitive to the dielectric constant of the environment and that lower dielectric medium favors the binding of inhibitors to the zinc cation.

[1] Andújar-Sánchez, M., Cámara-Artigas, A., & Jara-Pérez, V. (2004). A calorimetric study of the binding of lisinopril, enalaprilat and captopril to angiotensin-converting enzyme. Biophysical Chemistry, 111, 183–189. DOI: 10.1016/j.bpc.2004.05.011. http://dx.doi.org/10.1016/j.bpc.2004.05.01110.1016/j.bpc.2004.05.011Suche in Google Scholar PubMed

[2] Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. The Journal of Physical Chemistry A, 102, 1995–2001. DOI: 10.1021/jp9716997. http://dx.doi.org/10.1021/jp971699710.1021/jp9716997Suche in Google Scholar

[3] Barone, V., Cossi, M., & Tomasi, J. (1997). A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. The Journal of Chemical Physics, 107, 3210–3221. DOI: 10.1063/1.474671. http://dx.doi.org/10.1063/1.47467110.1063/1.474671Suche in Google Scholar

[4] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Suche in Google Scholar

[5] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Physical Review A, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098. http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Suche in Google Scholar

[6] Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural Biology, 10, 980. DOI: 10.1038/nsb1203-980. http://dx.doi.org/10.1038/nsb1203-98010.1038/nsb1203-980Suche in Google Scholar PubMed

[7] Bock, C. W., Katz, A. K., & Glusker, J. P. (1995). Hydration of zinc ions: A comparison with magnesium and beryllium ions. Journal of the American Chemical Society, 117, 3754–3765. DOI: 10.1021/ja00118a012. http://dx.doi.org/10.1021/ja00118a01210.1021/ja00118a012Suche in Google Scholar

[8] Bock, C. W., Katz, A. K., Markham, G. D., & Glusker, J. P. (1999). Manganese as a replacement for magnesium and zinc: Functional comparison of the divalent ions. Journal of the American Chemical Society, 121, 7360–7372. DOI: 10.1021/ja9906960. http://dx.doi.org/10.1021/ja990696010.1021/ja9906960Suche in Google Scholar

[9] Cheng, F., Zhang, R., Luo, X., Shen, J., Li, X., Gu, J., Zhu, W., Shen, J., Sagi, I., Ji, R., Chen, K., & Jiang, H. (2002). Quantum chemistry study on the interaction of the exogenous ligands and the catalytic zinc ion in matrix metalloproteinases. The Journal of Physical Chemistry B, 106, 4552–4559. DOI: 10.1021/jp013336j. http://dx.doi.org/10.1021/jp013336j10.1021/jp013336jSuche in Google Scholar

[10] Cini, R. (1999). Molecular orbital study of complexes of zinc(II) with sulphide, thiomethanolate, thiomethanol, dimethylthioether, thiophenolate, formiate, acetate, carbonate, hydrogen carbonate, iminomethane and imidazole: Relationships with structural and catalytic zinc in some metallo-enzymes. Journal of Biomolecular Structure and Dynamics, 16, 1225–1237. 10.1080/07391102.1999.10508330Suche in Google Scholar PubMed

[11] Corradi, H. R., Chitapi, I., Sewell, B. T., Georgiadis, D., Dive, V., Sturrock, E. D., & Acharya, K. R. (2007). The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380. Biochemistry, 46, 5473–5478. DOI: 10.1021/bi700275e. http://dx.doi.org/10.1021/bi700275e10.1021/bi700275eSuche in Google Scholar

[12] Corradi, H. R., Schwager, S. L. U., Nchinda, A. T., Sturrock, E. D., & Acharya, K. R. (2006). Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. Journal of Molecular Biology, 357, 964–974. DOI: 10.1016/j.jmb.2006.01.048. http://dx.doi.org/10.1016/j.jmb.2006.01.04810.1016/j.jmb.2006.01.048Suche in Google Scholar

[13] Deerfield, D. W., Carter, C. W., Jr., & Pedersen, L. G. (2001). Models for protein-zinc ion binding sites. II: The catalytic sites. International Journal of Quantum Chemistry, 83, 150–165. DOI: 10.1002/qua.1207. http://dx.doi.org/10.1002/qua.120710.1002/qua.1207Suche in Google Scholar

[14] Dudev, T., & Lim, C. (2003). Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chemical Reviews, 103, 773–788. DOI: 10.1021/cr020467n. http://dx.doi.org/10.1021/cr020467n10.1021/cr020467nSuche in Google Scholar

[15] Dudev, T., & Lim, C. (2000a). Tetrahedral vs octahedral zinc complexes with ligands of biological interest: A DFT/CDM study. Journal of the American Chemical Society, 122, 11146–11153. DOI: 10.1021/ja0010296. http://dx.doi.org/10.1021/ja001029610.1021/ja0010296Suche in Google Scholar

[16] Dudev, T., & Lim, C. (2000b). Metal binding in proteins: The effect of the dielectric medium. The Journal of Physical Chemistry B, 104, 3692–3694. DOI: 10.1021/jp9941559. http://dx.doi.org/10.1021/jp994155910.1021/jp9941559Suche in Google Scholar

[17] Fernandez, M., Liu, X., Wouters, M. A., Heyberger, S., & Husain, A. (2001). Angiotensin I-converting enzyme transition state stabilization by His1089. Evidence for a catalytic mechanism distinct from other gluzincin metalloproteinases. The Journal of Biological Chemistry, 276, 4998–5004. DOI: 10.1074/jbc.M009009200. http://dx.doi.org/10.1074/jbc.M00900920010.1074/jbc.M009009200Suche in Google Scholar

[18] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2004). Gaussian 03, Revision D.01. Wallingford, CT, USA: Gaussian, Inc. Suche in Google Scholar

[19] Garmer, D. R., Gresh, N., & Roques, B.-P. (1998). Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry. Proteins: Structure, Function, and Genetics, 31, 42–60. DOI: 10.1002/(SICI)1097-0134(19980401)31:1〈42. http://dx.doi.org/10.1002/(SICI)1097-0134(19980401)31:1<42::AID-PROT5>3.0.CO;2-J10.1002/(SICI)1097-0134(19980401)31:1<42::AID-PROT5>3.0.CO;2-JSuche in Google Scholar

[20] Gilson, M. K., & Honig, B. H. (1986). The dielectric constant of a folded protein. Biopolymers, 25, 2097–2119. DOI: 10.1002/bip.360251106. http://dx.doi.org/10.1002/bip.36025110610.1002/bip.360251106Suche in Google Scholar

[21] Hartmann, M., Clark, T., & van Eldik, R. (1997). Hydration and water exchange of zinc(II) ions. Application of density functional theory. Journal of the American Chemical Society, 119, 7843–7850. DOI: 10.1021/ja970483f. 10.1021/ja970483fSuche in Google Scholar

[22] Hasegawa, K., Ono, T.-a., & Noguchi, T. (2002). Ab initio density functional theory calculations and vibrational analysis of zinc-bound 4-methylimidazole as a model of a histidine ligand in metalloenzymes. The Journal of Physical Chemistry A, 106, 3377–3390. DOI: 10.1021/jp012251f. http://dx.doi.org/10.1021/jp012251f10.1021/jp012251fSuche in Google Scholar

[23] James, M. N. G., & Sielecki, A. R. (1983). Structure and refinement of penicillopepsin at 1.8 Å resolution. Journal of Molecular Biology, 163, 299–361. DOI: 10.1016/0022-2836(83)90008-6. http://dx.doi.org/10.1016/0022-2836(83)90008-610.1016/0022-2836(83)90008-6Suche in Google Scholar

[24] Karplus, M., McCammon, J. A., & Peticolas, W. L. (1981). The internal dynamics of globular proteins. Critical Reviews in Biochemistry and Molecular Biology, 9, 293–349. DOI: 10.3109/10409238109105437. http://dx.doi.org/10.3109/1040923810910543710.3109/10409238109105437Suche in Google Scholar PubMed

[25] Katz, A. K., Glusker, J. P., Beebe, S. A., & Bock, C. W. (1996). Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc. Journal of the American Chemical Society, 118, 5752–5763. DOI: 10.1021/ja953943i. http://dx.doi.org/10.1021/ja953943i10.1021/ja953943iSuche in Google Scholar

[26] Kimura, E. (2001). Model studies for molecular recognition of carbonic anhydrase and carboxypeptidase. Accounts of Chemical Research, 34, 171–179. DOI: 10.1021/ar000001w. http://dx.doi.org/10.1021/ar000001w10.1021/ar000001wSuche in Google Scholar PubMed

[27] Lee, C., Yang, W., & Paar, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Suche in Google Scholar

[28] Lee, S., Kim, J., Park, J. K., & Kim, K. S. (1996). Ab initio study of the structures, energetics, and spectra of Aquazinc(II). The Journal of Physical Chemistry, 100, 14329–14338. DOI: 10.1021/jp960714p. http://dx.doi.org/10.1021/jp960714p10.1021/jp960714pSuche in Google Scholar

[29] McCall, K. A., Huang, C.-c., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. Journal of Nutrition, 130, 1437S–1446S. 10.1093/jn/130.5.1437SSuche in Google Scholar PubMed

[30] Menziani, M. C., De Benedetti, P. G., Gago, F., & Richards, W. G. (1989). The binding of benzenesulfonamides to carbonic anhydrase enzyme. A molecular mechanics study and quantitative structure-activity relationships. Journal of Medicinal Chemistry, 32, 951–956. DOI: 10.1021/jm00125a005. http://dx.doi.org/10.1021/jm00125a00510.1021/jm00125a005Suche in Google Scholar PubMed

[31] Mertz, E. L., & Krishtalik, L. I. (2000). Low dielectric response in enzyme active site. Proceedings of the National Academy of Sciences of the USA, 97, 2081–2086. DOI: 10.1073/pnas.050316997. http://dx.doi.org/10.1073/pnas.05031699710.1073/pnas.050316997Suche in Google Scholar PubMed PubMed Central

[32] Nakamura, H., Sakamoto, T., & Wada, A. (1988). A theoretical study of the dielectric constant of protein. Protein Engineering, 2, 177–183. DOI: 10.1093/protein/2.3.177. http://dx.doi.org/10.1093/protein/2.3.17710.1093/protein/2.3.177Suche in Google Scholar PubMed

[33] Natesh, R., Schwager, S. L. U., Evans, H. R., Sturrock, E. D., & Acharya, K. R. (2004). Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry, 43, 8718–8724. DOI: 10.1021/bi049480n. http://dx.doi.org/10.1021/bi049480n10.1021/bi049480nSuche in Google Scholar PubMed

[34] Natesh, R., Schwager, S. L. U., Sturrock, E. D., & Acharya, K. R. (2003). Crystal structure of the human angiotensinconverting enzyme-lisinopril complex. Nature, 421, 551–554. DOI: 10.1038/nature01370. http://dx.doi.org/10.1038/nature0137010.1038/nature01370Suche in Google Scholar PubMed

[35] Nchinda, A. T., Chibale, K., Redelinghuys, P., & Sturrock, E. D. (2006). Synthesis of novel keto-ACE analogues as domain-selective angiotensin-I converting enzyme inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 4612–4615. DOI: 10.1016/j.bmcl.2006.06.003. http://dx.doi.org/10.1016/j.bmcl.2006.06.00310.1016/j.bmcl.2006.06.003Suche in Google Scholar PubMed

[36] Opie, L. H. (1994). Angiotensin converting enzyme inhibitors (2nd ed.). New York, NY, USA: Wiley-Liss. Suche in Google Scholar

[37] Pavlov, M., Siegbahn, P. E. M., & Sandström, M. (1998). Hydration of beryllium, magnesium, calcium, and zinc ions using density functional theory. The Journal of Physical Chemistry A, 102, 219–228. DOI: 10.1021/jp972072r. http://dx.doi.org/10.1021/jp972072r10.1021/jp972072rSuche in Google Scholar

[38] Peschke, M., Blades, A. T., & Kebarle, P. (2000). Binding energies for doubly-charged ions M2+ = Mg2+, Ca2+ and Zn2+ with the ligands L = H2O, acetone and N-methylacetamide in complexes: M L n2+ for n = 1 to 7 from gas phase equilibria determinations and theoretical calculations. Journal of the American Chemical Society, 122, 10440–10449. DOI: 10.1021/ja002021z. http://dx.doi.org/10.1021/ja002021z10.1021/ja002021zSuche in Google Scholar

[39] Pethig, R. (1979). Dielectric and electronic properties of biological materials. New York, NY, USA: Wiley. Suche in Google Scholar

[40] Redelinghuys, P., Nchinda, A. T., & Sturrock, E. D. (2005). Development of domain-selective angiotensin I-converting enzyme inhibitors. Annals of the New York Academy of Sciences, 1056, 160–175. DOI: 10.1196/annals.1352.035. http://dx.doi.org/10.1196/annals.1352.03510.1196/annals.1352.035Suche in Google Scholar PubMed

[41] Remko, M. (2007). Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors. Chemical Papers, 61, 133–141. DOI: 10.2478/s11696-007-0010-y. http://dx.doi.org/10.2478/s11696-007-0010-y10.2478/s11696-007-0010-ySuche in Google Scholar

[42] Remko, M., & Garaj, V. (2003). Thermodynamics of binding of Zn2+ to carbonic anhydrase inhibitors. Molecular Physics, 101, 2357–2368. DOI: 10.1080/0026897031000716583. http://dx.doi.org/10.1080/002689703100071658310.1080/0026897031000716583Suche in Google Scholar

[43] Remko, M., & Rode, B. M. (2006). Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. The Journal of Physical Chemistry A, 110, 1960–1967. DOI: 10.1021/jp054119b. http://dx.doi.org/10.1021/jp054119b10.1021/jp054119bSuche in Google Scholar PubMed

[44] Remko, M., & Rode, B. M. (2000). Thermodynamics of binding of Li+, Na+, Mg2+ and Zn2+ to Lewis bases in the gas phase. Journal of Molecular Structure: Theochem, 505, 269–281. DOI: 10.1016/S0166-1280(99)00381-4. http://dx.doi.org/10.1016/S0166-1280(99)00381-410.1016/S0166-1280(99)00381-4Suche in Google Scholar

[45] Rogalewicz, F., Ohanessian, G., & Gresh, N. (2000). Interaction of neutral and zwitterionic glycine with Zn2+ in gas phase: ab initio and SIBFA molecular mechanics calculations. Journal of Computational Chemistry, 21, 963–973. DOI: 10.1002/1096-987X(200008)21:11〈963::AIDJCC6〉3.0.CO;2–3. http://dx.doi.org/10.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-310.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-3Suche in Google Scholar

[46] Ryde, U. (1999). Carboxylate binding modes in zinc proteins: A theoretical study. Biophysical Journal, 77, 2777–2787. DOI: 10.1016/S0006-3495(99)77110-9. http://dx.doi.org/10.1016/S0006-3495(99)77110-910.1016/S0006-3495(99)77110-9Suche in Google Scholar

[47] Simonson, T., & Perahia, D. (1995). Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proceedings of the National Academy of Sciences of the USA, 92, 1082–1086. http://dx.doi.org/10.1073/pnas.92.4.108210.1073/pnas.92.4.1082Suche in Google Scholar

[48] Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)—molecule complexes. Chemical Papers, 59, 310–315. Suche in Google Scholar

[49] Smieško, M., & Remko, M. (2004). Two-layer ONIOM calculation of gas-phase acidities of selected ACE inhibitors. Chemical Papers, 58, 71–78. Suche in Google Scholar

[50] Smieško, M., & Remko, M. (2003). Coordination and thermodynamics of stable Zn(II) complexes in the gas phase. Journal of Biomolecular Structure and Dynamics, 20, 759–770. 10.1080/07391102.2003.10506893Suche in Google Scholar

[51] Smieško, M., & Remko, M. (2002). Preferred conformation of selected ACE inhibitors for interaction with ACE active site. Chemical Papers, 56, 138–143. Suche in Google Scholar

[52] Smith, P. E., Brunne, R. M., Mark, A. E., & van Gunsteren, W. F. (1993). Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations. The Journal of Physical Chemistry, 97, 2009–2014. DOI: 10.1021/j100111a046. http://dx.doi.org/10.1021/j100111a04610.1021/j100111a046Suche in Google Scholar

[53] Spyroulias, G. A., & Cordopatis, P. (2005). Current inhibition concepts of zinc metallopeptidases involved in blood pressure regulation. Current Enzyme Inhibition, 1, 29–42. DOI: 10.2174/1573408052952702. http://dx.doi.org/10.2174/157340805295270210.2174/1573408052952702Suche in Google Scholar

[54] Šramko, M., Garaj, V., & Remko, M. (2008). Thermodynamics of binding of angiotensin-converting enzyme inhibitors to enzyme active site model. Journal of Molecular Structure: Theochem, 869, 19–28. DOI: 10.1016/j.theochem.2008.08.018. http://dx.doi.org/10.1016/j.theochem.2008.08.01810.1016/j.theochem.2008.08.018Suche in Google Scholar

[55] Šramko, M., Remko, M., & Garaj, V. (2005). Theoretical study of gas-phase acidities of selected angiotensin-converting enzyme inhibitors. Structural Chemistry, 16, 391–399. DOI: 10.1007/s11224-005-6348-2. http://dx.doi.org/10.1007/s11224-005-6348-210.1007/s11224-005-6348-2Suche in Google Scholar

[56] Strömberg, D., Sandström, M., & Wahlgren, U. (1990). Theoretical calculations on the structure of the hexahydrated divalent zinc, cadmium and mercury ions. Chemical Physics Letters, 172, 49–54. DOI: 10.1016/0009-2614(90)87215-D. http://dx.doi.org/10.1016/0009-2614(90)87215-D10.1016/0009-2614(90)87215-DSuche in Google Scholar

[57] Swamy, K. M. K., Lin, M.-J., & Sun, C.-M. (2003). Advances in angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Mini-Reviews in Medicinal Chemistry, 3, 621–631. DOI: 10.2174/1389557033487944. http://dx.doi.org/10.2174/138955703348794410.2174/1389557033487944Suche in Google Scholar

[58] Tanaka, A., & Ishida, Y. (1973). Relation between dielectric behavior and structure in some solid polypeptides. Journal of Polymer Science: Polymer Physics Edition, 11, 1117–1138. DOI: 10.1002/pol.1973.180110607. http://dx.doi.org/10.1002/pol.1973.18011100410.1002/pol.1973.180110607Suche in Google Scholar

[59] Tiraboschi, G., Fournié-Zaluski, M.-C., Roques, B.-P., & Gresh, N. (2001). Intramolecular chelation of Zn2+ by α- and β-mercaptocarboxamides. A parallel ab initio and polarizable molecular mechanics investigation. Assessment of the role of multipole transferability. Journal of Computational Chemistry, 22, 1038–1047. DOI: 10.1002/jcc.1064. http://dx.doi.org/10.1002/jcc.106410.1002/jcc.1064Suche in Google Scholar

[60] Tiraboschi, G., Gresh, N., Giessner-Prettre, C., Pedersen, L. G., & Deerfield, D. W. (2000). Parallel ab initio and molecular mechanics investigation of polycoordinated Zn(II) complexes with model hard and soft ligands: Variations of the binding energy and of its components with number and charges of ligands. Journal of Computational Chemistry, 21, 1011–1039. DOI: 10.1002/1096-987X(200009)21:12〈1011. http://dx.doi.org/10.1002/1096-987X(200009)21:12<1011::AID-JCC1>3.0.CO;2-B10.1002/1096-987X(200009)21:12<1011::AID-JCC1>3.0.CO;2-BSuche in Google Scholar

[61] Wyvratt, M. J., & Patchett, A. A. (1985). Recent developments in the design of angiotensin-converting enzyme inhibitors. Medicinal Research Reviews, 5, 483–531. DOI: 10.1002/med.2610050405. http://dx.doi.org/10.1002/med.261005040510.1002/med.2610050405Suche in Google Scholar

[62] Yazal, J. E., & Pang, Y.-P. (2000). Proton dissociation energies of zinc-coordinated hydroxamic acids and their relative affinities for zinc: Insights into design inhibitors of zinccontaining proteinases. The Journal of Physical Chemistry B, 104, 6499–6504. DOI: 10.1021/jp0012707. http://dx.doi.org/10.1021/jp001270710.1021/jp0012707Suche in Google Scholar

[63] Yazal, J. E., & Pang, Y.-P. (1999). Ab initio calculations of proton dissociation energies of zinc ligands: Hypothesis of imidazolate as zinc ligand in proteins. The Journal of Physical Chemistry B, 103, 8773–8779. DOI: 10.1021/jp991787m. http://dx.doi.org/10.1021/jp991787m10.1021/jp991787mSuche in Google Scholar

[64] Yazal, J. E., Roe, R. R., & Pang, Y.-P. (2000). Zincșs affect on proton transfer between imidazole and acetate predicted by ab initio calculations. The Journal of Physical Chemistry B, 104, 6662–6667. DOI: 10.1021/jp994283x. http://dx.doi.org/10.1021/jp994283x10.1021/jp994283xSuche in Google Scholar

Published Online: 2010-3-31
Published in Print: 2010-6-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
  2. Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
  3. A simple turbidimetric flow injection system for saccharin determination in sweetener products
  4. Determination of metoprolol tartrate by capillary isotachophoresis
  5. Model predictive control of a CSTR: A hybrid modeling approach
  6. Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
  7. Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
  8. Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
  9. Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
  10. Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
  11. Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
  12. Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
  13. Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
  14. Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
  15. Voltammetry of resazurin at a mercury electrode
  16. Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
  17. HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0005-y/html
Button zum nach oben scrollen