Abstract
A new method for saccharin determination in liquid sweetener products was developed. The method is based on the precipitation reaction of Ag(I) ions with saccharin in aqueous medium (pH 3.0), using a flow injection analysis system with merging zones, the suspension was stabilized with 5 g L−1 Triton X-100. All experimental parameters influencing the flow injection system were optimized by means of chemometric approaches. The linear analytical curve was built from 2.4 g L−1 up to 9.64 g L−1 (r = 0.9968) with a quantification limit of 2.40 g L−1. The precision assessed as relative standard deviation (n = 10) was found to be 1.75 % for the saccharin concentration of 7.20 g L−1. Based on interference studies performed with the substances commonly found in liquid sweeteners, such as sodium cyclamate, methylparaben, sodium aspartame, and benzoic and citric acids, at the analyte to interferent mole ratio of up to 1: 10, no interference with the saccharin determination was observed. The presence of chloride ions interferes with the method, but a preceding liquid-liquid saccharin extraction with ethyl acetate was successfully employed to overcome this drawback. Accuracy of the method in sweetener products was evaluated by a comparison with the HPLC method.
[1] Amer, M. M., Haroun, I. A., Walash, M. I., & Ashour, F. M. (1978). The determination of mixtures of some artificial sweeteners. Pharmazie, 33, 435–438. Suche in Google Scholar
[2] Armenta, S., Garrigues, S., & de la Guardia, M. (2004). Sweeteners determination in table top formulations using FT-Raman spectrometry and chemometric analysis. Analytica Chimica Acta, 521, 149–155. DOI: 10.1016/j.aca.2004.05.077. http://dx.doi.org/10.1016/j.aca.2004.05.07710.1016/j.aca.2004.05.077Suche in Google Scholar
[3] Assumpção, M. H. M. T., Medeiros, R. A., Madi, A., & Fatibello-Filho, O. (2008). Desenvolvimento de um procedimento biamperométrico para determinação de sacarina em produtos dietéticos. Química Nova, 31, 1743–1746. DOI:10.1590/S0100-40422008000700028. http://dx.doi.org/10.1590/S0100-4042200800070002810.1590/S0100-40422008000700028Suche in Google Scholar
[4] Baran, E. J., & Yilmaz, V. T. (2006). Metal complexes of saccharin. Coordination Chemistry Review, 250, 1980–1999. DOI:10.1016/j.ccr.2005.11.021. http://dx.doi.org/10.1016/j.ccr.2005.11.02110.1016/j.ccr.2005.11.021Suche in Google Scholar
[5] Canaes, L. S., & Fatibello-Filho, O. (2006). Determinação turbidimétrica de metilbrometo de homatropina em formulaçës farmacęuticas empregando um sistema de análise por injeção em fluxo. Química Nova, 29, 1237–1240. DOI:10.1590/S0100-40422006000600017. http://dx.doi.org/10.1590/S0100-4042200600060001710.1590/S0100-40422006000600017Suche in Google Scholar
[6] Capitán-Vallvey, L. F., Valencia, M. C., & Arana Nicolás, E. (2004). Flow-through spectrophotometric sensor for the determination of saccharin in low-calorie products. Food Additives and Contaminants, 21, 32–41. DOI: 10.1080/0265203032000158283 http://dx.doi.org/10.1080/026520303200015828310.1080/0265203032000158283Suche in Google Scholar
[7] Cavicchioli, M., Varanda, L. C., Massabni, A. C., & Melnikov, P. (2005). Silver nanoparticles synthesized by thermal reduction of a silver(I)-aspartame complex in inert atmosphere. Materials Letters, 59, 3585–3589. DOI:10.1016/j.matlet.2005.07.001. http://dx.doi.org/10.1016/j.matlet.2005.07.00110.1016/j.matlet.2005.07.001Suche in Google Scholar
[8] Chen, Q.-C., Mou, S.-F., Liu, K.-N., Yang, Z.-Y., & Ni, Z.-M. (1997). Separation and determination of four artificial sweeteners and citric acid by high-performance anion-exchange chromatography. Journal of Chromatography A, 771, 135–143. DOI: 10.1016/S0021-9673(97)00067-8. http://dx.doi.org/10.1016/S0021-9673(97)00067-810.1016/S0021-9673(97)00067-8Suche in Google Scholar
[9] Fatibello-Filho, O., Nóbrega, J. A., & Guaritá-Santos, A. J. M. (1994). Flow-injection potentiometric determination of saccharin in dietary products with relocation on filtration unit. Talanta, 41, 731–734. DOI: 10.1016/0039-9140(93)E0018-9. http://dx.doi.org/10.1016/0039-9140(93)E0018-910.1016/0039-9140(93)E0018-9Suche in Google Scholar
[10] Filho, J. C., Santini, A. O., Nasser, A. L. M., Pezza, H. R., de Oliveira, J. E., Melios, C. B., & Pezza, L. (2003). Potentiometric determination of saccharin in commercial artificial sweeteners using a silver electrode. Food Chemistry, 83, 297–301. DOI: 10.1016/S0308-8146(03)00123-7. http://dx.doi.org/10.1016/S0308-8146(03)00123-710.1016/S0308-8146(03)00123-7Suche in Google Scholar
[11] García-Jiménez, J. F., Valencia, M. C., & Capitán-Vallvey, L. F. (2007). Simultaneous determination of antioxidants, preservatives and sweetener additives in food and cosmetics by flow injection analysis coupled to a monolithic column. Analytica Chimica Acta, 94, 226–233. DOI: 10.1016/j.aca.2007.05.040. http://dx.doi.org/10.1016/j.aca.2007.05.04010.1016/j.aca.2007.05.040Suche in Google Scholar PubMed
[12] Hannisdal, A., & Schroeder, K. H. (1993). Differential pulse polarographic determination of the artificial sweeteners acesulfame-K and saccharin in beverages. Electroanalysis, 5, 183–185. DOI: 10.1002/elan.1140050215. http://dx.doi.org/10.1002/elan.114005021510.1002/elan.1140050215Suche in Google Scholar
[13] Ivaldi, J. C., & Tyson, J. F. (1996). Real-time internal standardization with an axially viewed inductively coupled plasma for optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51, 1443–1450. DOI: 10.1016/0584-8547(96)01547-9. http://dx.doi.org/10.1016/0584-8547(96)01547-910.1016/0584-8547(96)01547-9Suche in Google Scholar
[14] Llamas, N. E., Di Nezio, M. S., Palomeque, M. E., & Fernández Band, B. S. (2005). Automated turbidimetric determination of cyclamate in low calorie soft drinks and sweeteners without pre-treatment. Analytica Chimica Acta, 539, 301–304. DOI:10.1016/j.aca.2005.03.044. http://dx.doi.org/10.1016/j.aca.2005.03.04410.1016/j.aca.2005.03.044Suche in Google Scholar
[15] Marcolino, L. H., Jr, Bonifácio, V. G., Fatibello-Filho, O., & Teixeira, M. F. S. (2005). Determinação turbidimétrica de dipirona em fluxo utilizando um reator contendo cloreto de prata imobilizado em resina poliéster. Química Nova, 28, 783–787. DOI: 10.1590/S0100-40422005000500009. 10.1590/S0100-40422005000500009Suche in Google Scholar
[16] Momozono, Y., Eto, S., & Isshiki, K. (1990). Gas-chromatographic determination of saccharin in foods by using trimethylsilyldiazomethane. Eisei Kagaku, 36, 56–61. 10.1248/jhs1956.36.56Suche in Google Scholar
[17] Parikh, P. M., & Mukherji, S. P. (1960). The determination of saccharin. Analyst, 85, 25–26. DOI: 10.1039/AN9608500025. http://dx.doi.org/10.1039/an960850002510.1039/an9608500025Suche in Google Scholar
[18] Suarez, W. T., Vieira, H. J., & Fatibello-Filho, O. (2007). Flow injection turbidimetric determination of acetylcysteine in pharmaceutical formulations using silver nitrate as precipitant reagent. Journal of the Brazilian Chemical Society, 18, 1028–1033. DOI: 10.1590/S0103-50532007000500023. 10.1590/S0103-50532007000500023Suche in Google Scholar
[19] Tarley, C. R. T., Barbosa, A. F., Segatelli, M. G., Figueiredo, E. C., & Luccas, P. O. (2006). Highly improved sensitivity of TS-FF-AAS for Cd(II) determination at ng L−1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. Journal of Analytical Atomic Spectrometry, 21, 1305–1313. DOI:10.1039/b606997e. http://dx.doi.org/10.1039/b606997e10.1039/B606997ESuche in Google Scholar
[20] Tarley, C. R. T., dos Santos, W. N. L., dos Santos, C. M., Arruda, M. A. Z., & Ferreira, S. L. C. (2004). Factorial design and Doehlert matrix in optimisation of flow system for pre concentration of copper on polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol. Analytical Letters, 37, 1437–1455. DOI: 10.1081/AL-120035909. http://dx.doi.org/10.1081/AL-12003590910.1081/AL-120035909Suche in Google Scholar
[21] U.S. Department of Health and Human Services (2001). Guidance for industry. Bioanalytical method validation. Retrieved August 24, 2009, from http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf Suche in Google Scholar
[22] Warner, C., Modderman, J., Fazio, T., Beroza, M., Schwartzmann, G., & Fominaya, K. (Eds.) (1993). Food additives analytical manual—A collection of analytical methods for selected food additives (5th ed.). Arlington, VA, USA: AOAC International. Suche in Google Scholar
[23] Weinert, P. L., Pezza, H. R., de Oliveira, J. E., & Pezza, L. (2004). Simplified spectrophotometric method for routine analysis of saccharin in commercial noncaloric sweeteners. Journal of Agriculture and Food Chemistry, 52, 7788–7792. DOI: 10.1021/jf0402781. http://dx.doi.org/10.1021/jf040278110.1021/jf0402781Suche in Google Scholar PubMed
[24] Yano, M., Shiba, S., Yokoyama, Y., Tagawa, Y., Masui, T., Ozawa, T., Warabi, Y., Saga, J., Hyodo, N., Matsumoto, T., & Azuma, N. (1992). Determination of saccharin in foods by HPLC. Japanese Journal of Toxicology and Environmental Health, 38, 196–201. Suche in Google Scholar
[25] Yebra, M. C., Gallego, M., & Valcárcel, M (1995). Precipitation flow-injection method for the determination of saccharin in mixtures of sweeteners. Analytica Chimica Acta, 308, 275–280. DOI: 10.1016/0003-2670(94)00259-O. http://dx.doi.org/10.1016/0003-2670(94)00259-O10.1016/0003-2670(94)00259-OSuche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Artikel in diesem Heft
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product