Home Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
Article
Licensed
Unlicensed Requires Authentication

Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes

  • Alaa Amin EMAIL logo , Ibrahim Ahmed , Hassan Dessouki and Hassan Mohamed
Published/Copyright: March 31, 2010
Become an author with De Gruyter Brill

Abstract

Simple and rapid spectrophotometric methods have been developed for the microdetermination of fluoxetine HCl. The proposed methods are based on the formation of ion-pair complexes between fluoxetine and bromophenol blue (BPB), bromothymol blue (BTB), bromocresol green (BCG), and bromocresol purple (BCP) which can be measured at optimum λmax. Optimization of reaction conditions was investigated. Beerșs law was obeyed in the concentration ranges of 0.5–8.0 μg mL−1, whereas optimum concentration as adopted from the Ringbom plots was 0.7–7.7 μg mL−1. The molar absorptivity, Sandell sensitivity, and detection limit were also calculated. The most optimal and sensitive method was developed using BCG. The correlation coefficient was 0.9988 (n = 6) with a relative standard deviation of 1.25, for six determinations of 4.0 μg mL−1. The proposed methods were successfully applied to the determination of fluoxetine hydrochloride in its dosage forms and in biological fluids (spiked plasma sample) using the standard addition technique.

[1] Abu Zuhri, A. Z., Shubietah, R. M., & Badah, G. M. (1999). Extractional-spectrophotometric determination of famotidine in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 21, 459–465. DOI: 10.1016/S0731-7085(99)00139-9. http://dx.doi.org/10.1016/S0731-7085(99)00139-910.1016/S0731-7085(99)00139-9Search in Google Scholar

[2] Amin, A. S. (1997). Quantitative determination of some pharmaceutical veterinary formulations using bromocresol purple and bromocresol green. Analytical Letters, 30, 2503–2513. DOI: 10.1080/00032719708001761. 10.1080/00032719708001761Search in Google Scholar

[3] Amin, A. S., & Dessouki, H. A. (2002). Facile colorimetric methods for the quantitative determination of tetramisole hydrochloride. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 2541–2546. DOI: 10.1016/S1386-1425(02)00005-7. http://dx.doi.org/10.1016/S1386-1425(02)00005-710.1016/S1386-1425(02)00005-7Search in Google Scholar

[4] Amin, A. S., El-Sheikh, R., Zahran, F., & Gouda, A. A. (2006). Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 1088–1093. DOI: 10.1016/j.saa.2006.09.027. http://dx.doi.org/10.1016/j.saa.2006.09.02710.1016/j.saa.2006.09.027Search in Google Scholar PubMed

[5] Amin, A. S., & Issa, Y. M. (2000). Spectrophotometric microdetermination of some pharmaceutically important aminoquinoline antimalarials, as ion-pair complexes. Microchimica Acta, 134, 133–138. DOI: 10.1007/s006040070028. http://dx.doi.org/10.1007/s00604007002810.1007/s006040070028Search in Google Scholar

[6] Amin, A. S., & Issa, Y. M. (1999). Utility of the ion-pair formation for the spectrophotometic determination of terfenadine in pure form and in pharmaceutical formulations. Microchimica Acta, 130, 173–179. DOI: 10.1007/BF01244924. http://dx.doi.org/10.1007/BF0124492410.1007/BF01244924Search in Google Scholar

[7] Amin, A. S., & Issa, Y. M. (1997). Extraction-spectrophotometric method for the determination of betamethasone in pure form and in pharmaceutical formulations. Analytical Letters, 30, 69–78. DOI: 10.1080/00032719708002291. 10.1080/00032719708002291Search in Google Scholar

[8] Amin, A. S., & Issa, Y. M. (1995). Spectrophotometric determination of 6-aminopenicillanic acid using bromophenol blue and bromothymol blue. Microchimica Acta, 117, 187–194. DOI: 10.1007/BF01244889. http://dx.doi.org/10.1007/BF0124488910.1007/BF01244889Search in Google Scholar

[9] Amin, A. S., Moustafa, M. E., & El-Dosoky, R. M. S. (2009). Colorimetric determination of sildenafil citrate (Viagra) through ion-associate complex formation. Journal of the Association of Official Analytical Chemists International, 92, 125–130. 10.1093/jaoac/92.1.125Search in Google Scholar

[10] Atmaca, S. (1995). Fluorimetric determination of fluoxetine hydrochloride. Pharmazie, 50, 300–301. Search in Google Scholar

[11] British Pharmacopoeia Commission (2005). British Pharmacopoeia (Vol. II, pp. 2487–2488). London, UK: The Stationery Office. Search in Google Scholar

[12] Britton, H. T. S. (1952). Hydrogen ions (4th ed., pp. 1168). London, UK: Chapman and Hall. Search in Google Scholar

[13] Cheer, S. M., & Goa, K. L. (2001). Fluoxetine. A review of its therapeutic potential in the treatment of depression associated with physical illness. Drugs, 61, 81–110. http://dx.doi.org/10.2165/00003495-200161010-0001010.2165/00003495-200161010-00010Search in Google Scholar PubMed

[14] Desiderio, C., Rudaz, S., Raggi, M. A., & Fanali, S. (1999). Enantiomeric separation of fluoxetine and norfluoxetine in plasma and serum samples with high detection sensitivity capillary electrophoresis. Electrophoresis, 20, 3432–3438. DOI: 10.1002/(SICI)1522-2683(19991101)20:17<3432::AIDELPS3432>3.0. CO;2-8. http://dx.doi.org/10.1002/(SICI)1522-2683(19991101)20:17<3432::AID-ELPS3432>3.0.CO;2-810.1002/(SICI)1522-2683(19991101)20:17<3432::AID-ELPS3432>3.0.CO;2-8Search in Google Scholar

[15] Eap, C. B., & Baumann, P. (1996). Analytical methods for the quantitative determination of selective serotonin reuptake inhibitors for therapeutic drug monitoring purposes in patients. Journal of Chromatography B, 686, 51–63. DOI: 10.1016/S0378-4347(96)00338-6. http://dx.doi.org/10.1016/S0378-4347(96)00338-610.1016/S0378-4347(96)00338-6Search in Google Scholar

[16] El-dawy, M. A., Mabrouk, M. M., & El-Barbary, F. A. (2002). Liquid chromatographic determination of fluoxetine. Journal of Pharmaceutical and Biomedical Analysis, 30, 561–571. DOI: 10.1016/S0731-7085(02)00312-6. http://dx.doi.org/10.1016/S0731-7085(02)00312-610.1016/S0731-7085(02)00312-6Search in Google Scholar

[17] Flores, J. R., Nevado, J. J. B., Salcedo, A. M. C., & Díaz, M. P. C. (2004). Development of a capillary zone electrophoretic method to determine six antidepressants in their pharmaceutical preparations. Experimental design for evaluating the ruggedness of method. Journal of Separation Science, 27, 33–40. DOI: 10.1002/jssc.200301646. http://dx.doi.org/10.1002/jssc.20030164610.1002/jssc.200301646Search in Google Scholar

[18] Irving, H. M. N. H., Freiser, H., & West, T. S. (1981). IUPAC compendium of analytical nomenclature: Definitive rules. Oxford, UK: Pergamon Press. Search in Google Scholar

[19] Khan, I. U., Aman, T., Iqbal, M. A., & Kazi, A. A. (2000). Spectrophotometric quantitation of fluoxetine hydrochloride using benzoyl peroxide and potassium iodide. Microchimica Acta, 134, 27–31. DOI: 10.1007/s006040070049. http://dx.doi.org/10.1007/s00604007004910.1007/s006040070049Search in Google Scholar

[20] Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Harlow, UK: Pearson, Prentice Hall. Search in Google Scholar

[21] Nevado, J. J. B., Llerena, M. J. V., Salcedo, A. M. C., & Nuevo, E. A. (2000). Determination of fluoxetine, fluvoxamine and clomipramine in pharmaceutical formulations by capillary gas chromatography. Journal of Chromatographic Science, 38, 200–206. 10.1093/chromsci/38.5.200Search in Google Scholar

[22] Panzarino, P. J., & Nash, D. B. (2001). Cost effective treatment of depression with selective serotonin reuptake inhibitors. American Journal of Management Care, 7, 173–184. Search in Google Scholar

[23] Piperaki, S., & Parissi-Poulou, M. (1996). Evaluation of the chromatographic behaviour of fluoxetine and norfluoxetine using different cyclodextrins as mobile phase additives and fluorimetric detection. Journal of Liquid Chromatography & Related Technologies, 19, 1405–1421. DOI: 10.1080/10826079608007191. http://dx.doi.org/10.1080/1082607960800719110.1080/10826079608007191Search in Google Scholar

[24] Prabhakar, A. H., Patel, V. B., & Giridhar, R. (1999). Spectrophotometric determination of fluoxetine hydrochloride in bulk and in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 20, 427–432. DOI: 10.1016/S0731-7085(98) 00255-6. http://dx.doi.org/10.1016/S0731-7085(98)00255-610.1016/S0731-7085(98)00255-6Search in Google Scholar

[25] Rahman, N., & Hejaz-Azmi, S. N. (2000). Extractive spectrophotometric methods for determination of diltiazem HCl in pharmaceutical formulations using bromothymol blue, bromophenol blue and bromocresol green. Journal of Pharmaceutical and Biomedical Analysis, 24, 33–41. DOI: 10.1016/S0731-7085(00)00409-X. http://dx.doi.org/10.1016/S0731-7085(00)00409-X10.1016/S0731-7085(00)00409-XSearch in Google Scholar

[26] Saber, A. L. (2009). On-line solid phase extraction coupled to capillary LC-ESI-MS for determination of fluoxetine in human blood plasma, Talanta, 78, 295–299. DOI: 10.1016/j.talanta.2008.11.016. http://dx.doi.org/10.1016/j.talanta.2008.11.01610.1016/j.talanta.2008.11.016Search in Google Scholar

[27] Spinks, D., & Spinks, G. (2002). Serotonin reuptake inhibition: an update on current research strategies. Current Medicinal Chemistry, 9, 799–810. http://dx.doi.org/10.2174/092986702460679510.2174/0929867024606795Search in Google Scholar PubMed

[28] The United States Pharmacopeia (2005). The United States Pharmacopeia, USP 28, The National Formulary (pp. 853–856). Rockville, MD, USA: U.S. Pharmacopeial Convention, Inc. Search in Google Scholar

[29] Zamora, L. L., & Calatayud, J. M. (1996). Extractive spectrophotometric determination of ondansetron by ion-pair formation with bromocresol green. Analytical Letters, 29, 785–792. DOI: 10.1080/00032719608001784. 10.1080/00032719608001784Search in Google Scholar

Published Online: 2010-3-31
Published in Print: 2010-6-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
  2. Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
  3. A simple turbidimetric flow injection system for saccharin determination in sweetener products
  4. Determination of metoprolol tartrate by capillary isotachophoresis
  5. Model predictive control of a CSTR: A hybrid modeling approach
  6. Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
  7. Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
  8. Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
  9. Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
  10. Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
  11. Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
  12. Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
  13. Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
  14. Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
  15. Voltammetry of resazurin at a mercury electrode
  16. Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
  17. HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0010-1/html
Scroll to top button