Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
Abstract
An efficient Knoevenagel route using green chemistry conditions was applied for the synthesis of halogen- and cyano- substituted pyridinevinylene compounds. Absorption and fluorescence emission spectra of these conjugated compounds were recorded and compared in order to evaluate the effect of substituents on the electronic properties of pyridinevinylene compounds. The substituents studied were terminal Cl and F, two or three aromatic rings, as well as a cyano group attached to a C=C double bond. The compounds synthesized are: (E)-2-(4-fluorostyryl)pyridine, (E)-2-(4-chlorostyryl)pyridine, (E)-4-(4-chlorostyryl)pyridine, 2,3-diphenylacrylonitrile, 3-phenyl-2-(pyridin-2-yl)acrylonitrile, 3-phenyl-2-(pyridin-3-yl)acrylonitrile, 2-phenyl-3-(pyridin-2-yl)acrylonitrile, 3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile), 3,3′-(1,4-phenylene)bis(2-(pyridin-2-yl)acrylonitrile), and 3,3′-(1,4-phenylene)bis(2-(pyridin-3-yl)acrylonitrile). The solvent-free method used in this work allows obtaining each compound by controlling the reaction temperature. The compounds were characterized by infrared spectroscopy and 1H-NMR spectroscopy.
[1] Bellamy, L. J. (1975). The infra-red spectra of complex molecules (3rd ed.). New York, NY, USA: Wiley. 10.1007/978-94-011-6017-9Suche in Google Scholar
[2] Belletęte, M., Morin, J.-F., Leclerc, M., & Durocher, G. J. (2005). A theoretical, spectroscopic, and photophysical study of 2,7-carbazolenevinylene-based conjugated derivatives. The Journal of the Physical Chemistry A, 109, 6953–6959. DOI: 10.1021/jp051349h. http://dx.doi.org/10.1021/jp051349h10.1021/jp051349hSuche in Google Scholar
[3] Bergmann, E. D., Ginsburg, D., & Pappo, R. (1959). The Michael reaction. In R. Adams (Ed.) Organic reactions (Vol. 10, pp. 179–555). Hoboken, NJ, USA: Wiley. Suche in Google Scholar
[4] Best, S. R., & Thorpe, J. F. (1909). LXXXII.—The formation and reactions of iminocompounds. Part IX. The formation of derivatives of cyclopentane from αδ-dicyano-derivatives of butane. Journal of the Chemical Society, Transactions, 95, 685–714. DOI: 10.1039/CT9099500685. http://dx.doi.org/10.1039/ct909950068510.1039/CT9099500685Suche in Google Scholar
[5] Bigi, F., Conforti, M. L., Maggi, R., Piccinno, A., & Sartori, G. (2000). Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chemistry, 2, 101–103. DOI: 10.1039/b001246g. http://dx.doi.org/10.1039/b001246g10.1039/b001246gSuche in Google Scholar
[6] Boucard, V. (2001). Kinetic study of the Knoevenagel condensation applied to the synthesis of poly[bicarbazolylene-alt-phenylenebis(cyanovinylene)]s. Macromolecules, 34, 4308–4313. DOI: 10.1021/ma002233g. http://dx.doi.org/10.1021/ma002233g10.1021/ma002233gSuche in Google Scholar
[7] Boucard, V., Benazzi, T., Adès, D., Sauvet, G., & Siove, A. (1997). New alternating donor-acceptor type conjugated copolymer: poly[bicarbazolylene-alt-phenylene-bis(cyanovinylene)]. Synthesis and properties. Polymer, 38, 3697–3703. DOI: 10.1016/S0032-3861(96)00936-6. http://dx.doi.org/10.1016/S0032-3861(96)00936-610.1016/S0032-3861(96)00936-6Suche in Google Scholar
[8] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539–541. DOI: 10.1038/347539a0. http://dx.doi.org/10.1038/347539a010.1038/347539a0Suche in Google Scholar
[9] Castle, R. N., & Seese, W. S. (1955). The reaction of pyridine aldehydes with phenylacetonitriles. Journal of Organic Chemistry, 20, 987–989. DOI: 10.1021/jo01365a004. http://dx.doi.org/10.1021/jo01365a00410.1021/jo01365a004Suche in Google Scholar
[10] Chapela, V. M., Percino, M. J., & Rodríguez-Barbarín, C. (2003). Crystal structure of 2,6-distyrylpyridine. Journal of Chemical Crystallography, 33, 77–83. DOI: 10.1023/A:1023210422362. http://dx.doi.org/10.1023/A:102321042236210.1023/A:1023210422362Suche in Google Scholar
[11] Cope, A. C. (1937). Condensation reactions. I. The condensation of ketones with cyanoacetic esters and the mechanism of the Knoevenagel reaction. Journal of the American Chemical Society, 59, 2327–2330. DOI: 10.1021/ja01290a068. http://dx.doi.org/10.1021/ja01290a06810.1021/ja01290a068Suche in Google Scholar
[12] Detert, H., & Sugiono, E. (2000). Soluble oligo(phenylenevinylene) s with electron withdrawing substituents for the use in light emitting diodes. Synthetic Metals, 115, 89–92. DOI: 10.1016/S0379-6779(00)00308-8. http://dx.doi.org/10.1016/S0379-6779(00)00308-810.1016/S0379-6779(00)00308-8Suche in Google Scholar
[13] Dubey, P. K., Prasada Reddy, P. V. V., & Srinivas, K. (2007). A facile tandem synthesis of α-benzyl benzimidazole acetonitriles. ARKIVOC, 2007(xv), 192–198. 10.3998/ark.5550190.0008.f19Suche in Google Scholar
[14] Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M., & Salaneck, W. R. (1999). Electroluminescence in conjugated polymers. Nature, 397, 121–128. DOI: 10.1038/16393. http://dx.doi.org/10.1038/1639310.1038/16393Suche in Google Scholar
[15] Gierschner, J., Lüer, L., Oelkrug, D., Musluoğlu, E., Behnisch, B., & Hanack, M. (2000). Preparation and optical properties of oligophenylenevinylene/perhydrotriphenylene inclusion compounds. Advanced Materials, 12, 757–761. DOI: 10.1002/(SICI)1521-4095(200005)12:10<757::AID-ADMA757>3.0.CO;2-F. http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<757::AID-ADMA757>3.0.CO;2-F10.1002/(SICI)1521-4095(200005)12:10<757::AID-ADMA757>3.0.CO;2-FSuche in Google Scholar
[16] Giglio, L., Mazzucato, U., Musumarra, G., & Spalletti, A. (2000). Photophysics and photochemistry of 2,6-distyrylpyridine and some heteroanalogues. Physical Chemistry Chemical Physics, 2, 4005–4012. DOI: 10.1039/b004141f. http://dx.doi.org/10.1039/b004141f10.1039/b004141fSuche in Google Scholar
[17] Gillissen, S., Jonforsen, M., Kesters, E., Johansson, T., Theander, M., Andersson, M. R., Inganäs, O., Lutsen, L., & Vanderzande, D. (2001). Synthesis and characterization of poly(pyridine vinylene) via the sulfinyl precursor route. Macromolecules, 34, 7294–7299. DOI: 10.1021/ma010575w. http://dx.doi.org/10.1021/ma010575w10.1021/ma010575wSuche in Google Scholar
[18] Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1993). Efficient light-emitting diodes based on polymers with high electron affinities. Nature, 365, 628–630. DOI: 10.1038/365628a0. http://dx.doi.org/10.1038/365628a010.1038/365628a0Suche in Google Scholar
[19] Jin, Y., Ju, J., Kim, J., Lee, S., Kim, J. Y., Park, S. H., Son, S.-M., Jin, S.-H., Lee, K., & Suh, H. (2003). Design, synthesis, and electroluminescent property of CN-poly(dihexylfluorenevinylene) for LEDs. Macromolecules, 36, 6970–6975. DOI: 10.1021/ma025862u. http://dx.doi.org/10.1021/ma025862u10.1021/ma025862uSuche in Google Scholar
[20] Kang, B. S., Kim, D. H., Lim, S. M., Kim, J., Seo, M.-L., Bark, K. M., Shin, S. C., & Nahm, K. (1997). Thiophene-based π-conjugated emitting polymers: Synthesis and photophysical properties of poly[2-(dodecyloxy)-5-methyl-m-phenyleneethynylene] and poly[2-(dodecyloxy)-5-methyl-m-bis(ethynyl) phenyleneoligo-thienylene]s. Macromolecules, 30, 7196–7201. DOI: 10.1021/ma9709462. http://dx.doi.org/10.1021/ma970946210.1021/ma9709462Suche in Google Scholar
[21] Knoevenagel, E. (1896). Ueber eine Darstellungsweise des Benzylidenacetessigesters. Berichte der Deutschen Chemischen Gesellschaft, 29, 172–174. DOI: 10.1002/cber.18960290133. http://dx.doi.org/10.1002/cber.1896029013310.1002/cber.18960290133Suche in Google Scholar
[22] Krauch, H., & Kunz, W. (1969). Reaktionen der organischen Chemie (4th ed.). Heidelberg, Germany: Hüthig Verlag. Suche in Google Scholar
[23] Liu, M. S., Jiang, X., Liu, S., Herguth, P., & Jen, A. K.-Y. (2002). Effect of cyano substituents on electron affinity and electron-transporting properties of conjugated polymers. Macromolecules, 35, 3532–3538. DOI: 10.1021/ma011790f. http://dx.doi.org/10.1021/ma011790f10.1021/ma011790fSuche in Google Scholar
[24] Mitschke, U., & Bäuerle, P. (2000). The electroluminescence of organic materials. Journal of Materials Chemistry, 10, 1471–1507. DOI: 10.1039/a908713c. http://dx.doi.org/10.1039/a908713c10.1039/a908713cSuche in Google Scholar
[25] Nakanishi, K., & Solomon, P. H. (1977). Infrared absorption spectroscopy (2nd ed.). Oakland, CA, USA: Holden-day, Inc. Suche in Google Scholar
[26] Patai, S., & Israeli, Y. (1960a). The kinetics and mechanics of carbonyl-methylene condensations. Part VI. The reactions of malononitrile with aromatic aldehydes in water. Journal of the Chemical Society, 1960, 2020–2024. DOI: 10.1039/JR9600002020. 10.1039/JR9600002020Suche in Google Scholar
[27] Patai, S., & Israeli, Y. (1960b). The kinetics and mechanisms of carbonyl-methylene condensations. Part VII. The reaction of malononitrile with aromatic aldehydes in ethanol. Journal of the Chemical Society, 1960, 2025–2029. DOI: 10.1039/JR9600002025. 10.1039/JR9600002025Suche in Google Scholar
[28] Patai, S., & Israeli, Y. (1960c). The kinetics and mechanisms of carbonyl-methylene condensations. Part IX. The reaction of cyanoacetamide with aromatic aldehydes in ethanol and in water. Journal of the Chemical Society, 1960, 2038–2043. DOI: 10.1039/JR9600002038. 10.1039/JR9600002038Suche in Google Scholar
[29] Patai, S., & Zabicky, J. (1960). The kinetics and mechanisms of carbonyl-methylene condensations. Part VIII. The reaction of ethyl cyanoacetate with aromatic aldehydes in ethanol, in water, and in ethanol-water mixtures. Journal of the Chemical Society, 1960, 2030–2037. DOI: 10.1039/JR9600002030. 10.1039/JR9600002030Suche in Google Scholar
[30] Percino, M. J., & Chapela, V. M. (2000). Unexpected intermediate 1-phenyl-2-(4-pyridyl)ethanol isolated from benzaldehyde and 4-picoline condensation reaction. Research on Chemical Intermediates, 26, 303–307. DOI: 10.1163/156856700X00804. http://dx.doi.org/10.1163/156856700X0080410.1163/156856700X00804Suche in Google Scholar
[31] Percino, M. J., Chapela, V. M., Montiel, L.-F., & Rodríguez-Babarín, C. (2008). X-ray crystal structures of a 1-(p-fluorophenyl)-2-(α-pyridyl)ethanol intermediate and the 1-(p-fluorophenyl)-2-(α-pyridyl)ethene dehydration compound obtained from the condensation reaction of 2-methylpyridine and p-pluorobenzaldehyde. The Open Crystallography Journal, 1, 37–41. DOI: 10.2174/1874846500801010037. http://dx.doi.org/10.2174/187484650080101003710.2174/1874846500801010037Suche in Google Scholar
[32] Percino, M. J., Chapela, V. M., Salmón, M., Espinoza-Pérez, G., Herrera, A. M., & Flores, A. (1997). X-ray crystal structure of 2-styrylpyridine. Journal of Chemical Crystallography, 27, 549–552. DOI: 10.1007/BF02576446. http://dx.doi.org/10.1007/BF0257644610.1007/BF02576446Suche in Google Scholar
[33] Percino, M. J., Chapela, V. M., Salmón, M., & Toscano, R. A. (2000). Unexpected crystallization and X-ray crystal structure of racemic 1-phenyl-2-(4-pyridyl)ethanol intermediate. Journal of Chemical Crystallography, 30, 385–388. DOI: 10.1023/A:1009577721468. http://dx.doi.org/10.1023/A:100957772146810.1023/A:1009577721468Suche in Google Scholar
[34] Percino, M. J., Chapela, V. M., Sánchez, A., & Maldonado-Rivera, J. L. (2006). Condensation reactions of methylpyridines and aromatic aldehydes under catalyst and solvent free conditions. Chemistry: An Indian Journal, 3(9–10), 262–267. Suche in Google Scholar
[35] Percino, M. J., Chapela, V. M., Urzúa, O., Montiel, L.-F., & Rodríguez-Barbarín, C. (2007). 1-(p-Fluorophenyl)-2-(2′-pyridyl)ethanol and 1-(p-fluorophenyl)-2-(2′-pyridyl)ethene obtained from the condensation reaction of 2-picoline and p-fluorophenylaldehyde under catalyst- and solvent-free conditions. Research on Chemical Intermediates, 33, 623–629. DOI: 10.1163/156856707781749946. 10.1163/156856707781749946Suche in Google Scholar
[36] Pinto, M. R., Hu, B., Karasz, F. E., & Akcelrud, L. (2000). Light-emitting copolymers of cyano-containing PPV-based chromophores and a flexible spacer. Polymer, 41, 2603–2611. DOI: 10.1016/S0032-3861(99)00430-9. http://dx.doi.org/10.1016/S0032-3861(99)00430-910.1016/S0032-3861(99)00430-9Suche in Google Scholar
[37] Roncalli, J. (1997). Synthetic principles for bandgap control in linear π-conjugated systems. Chemical Reviews, 97, 173–206. DOI: 10.1021/cr950257t. http://dx.doi.org/10.1021/cr950257t10.1021/cr950257tSuche in Google Scholar PubMed
[38] Silverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6th ed.). Hoboken, NJ, USA: Wiley. Suche in Google Scholar
[39] Smith, J. M., Jr. (1947). Halogenated phenacylpyridines. U.S. patent No. 2482521. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar
[40] Tanaka, K., & Toda, F. (2000). Solvent-free organic synthesis. Chemical Reviews, 100, 1025–1074. DOI: 10.1021/cr940089p. http://dx.doi.org/10.1021/cr940089p10.1021/cr940089pSuche in Google Scholar PubMed
[41] Tetsuzo, K., Takayuki, S., & Toshio, A. (1969). Synthesis of methylpyridine derivatives. XXV. Synthesis of α-substituted 2-pyridineacetonitriles. Journal of the Pharmaceutical Society of Japan, 89, 188–193. Suche in Google Scholar
[42] Wang, G.-W., & Cheng, B. (2004). Solvent-free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile. ARKIVOC, 2004(ix), 4–8. 10.3998/ark.5550190.0005.902Suche in Google Scholar
[43] Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed.). Maidenhead, UK: McGraw-Hill. Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Artikel in diesem Heft
- A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
- Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
- A simple turbidimetric flow injection system for saccharin determination in sweetener products
- Determination of metoprolol tartrate by capillary isotachophoresis
- Model predictive control of a CSTR: A hybrid modeling approach
- Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
- Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
- Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
- Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
- Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
- Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
- Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
- Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
- Voltammetry of resazurin at a mercury electrode
- Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
- HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product