Startseite The Role of Discrete Event Simulation for Assembly Planning
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Role of Discrete Event Simulation for Assembly Planning

A Concept for a Decision Support System
  • Daniel Gutmann

    Dipl.-Ing. Daniel Gutmann studied Production Science and Management at Graz University of Technology. He is a university assistant and PhD candidate at the Institute of Innovation and Industrial Management.

    , Heimo Preising

    Dipl.-Ing. Heimo Preising studied Mechanical Engineering and Business Economics at Graz University of Technology. He is a project assistant and PhD candidate at the working group Industrial Management as the Institute of Innovation and Industrial Management with a focus on intra-firm manufacturing network efficiency.

    , Kai Rüdele

    Kai Rüdele, M.Sc., studied Management and Technology at Technical University of Munich. He is a university assistant and PhD candidate at the Institute of Innovation and Industrial Management. Previously, he worked for four years as a consultant in the automotive industry.

    EMAIL logo
    und Matthias Wolf

    Dr. Matthias Wolf studied Mechanical Engineering and Business Economics at Graz University of Technology. He is assistant professor and head of the working group Industrial Management at the Institute of Innovation and Industrial Management. His research focuses on advanced industrial engineering and sustainable production.

Veröffentlicht/Copyright: 7. September 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Montagelinien sind häufig sehr komplex und ihre Ausgestaltung hat direkten Einfluss auf Ausbringung und Margen. Die diskrete Eventsimulation (DES) gilt als ein leistungsstarkes Werkzeug zur Planung, Bewertung und Optimierung von Montageprozessen. Dieser Beitrag untersucht einen Ansatz für die Verwendung von DES für die Planung einer Montagelinien auf der Grundlage einer morphologischen Analyse. Im Fallbeispiel steht nicht die Qualität des Simulationsmodells im Vordergrund, sondern die Frage, wann dessen Einsatz sinnvoll ist.

Abstract

Assembly lines can be very complex and their performance directly determine the output, efficiency and margin. Discrete event simulation (DES) is considered a powerful tool for designing, analyzing, and optimizing of assembling operations. In this paper, a decision-making approach for using discrete event simulation for the planning of assembly lines based on morphologic analysis has been investigated. In this context, it is not about determining the quality of a simulation model, but rather whether it is reasonable at all.


Hinweis

Bei diesem Beitrag handelt es sich um einen von den Mitgliedern des ZWF-Advisory-Board wissenschaftlich begutachteten Fachaufsatz (Peer Review).



Tel.: + 43 316 873-9543

About the authors

Dipl.-Ing. Daniel Gutmann

Dipl.-Ing. Daniel Gutmann studied Production Science and Management at Graz University of Technology. He is a university assistant and PhD candidate at the Institute of Innovation and Industrial Management.

Dipl.-Ing. Heimo Preising

Dipl.-Ing. Heimo Preising studied Mechanical Engineering and Business Economics at Graz University of Technology. He is a project assistant and PhD candidate at the working group Industrial Management as the Institute of Innovation and Industrial Management with a focus on intra-firm manufacturing network efficiency.

Kai Rüdele

Kai Rüdele, M.Sc., studied Management and Technology at Technical University of Munich. He is a university assistant and PhD candidate at the Institute of Innovation and Industrial Management. Previously, he worked for four years as a consultant in the automotive industry.

Dr. Matthias Wolf

Dr. Matthias Wolf studied Mechanical Engineering and Business Economics at Graz University of Technology. He is assistant professor and head of the working group Industrial Management at the Institute of Innovation and Industrial Management. His research focuses on advanced industrial engineering and sustainable production.

References

1 Lu, H.; Liu, X.; Pang, W.; Ye, W.; Wei, B.: Modeling and Simulation of Aircraft Assembly Line based on Quest. Advanced Material Research 569 (2012), S. 666–669 10.4028/www.scientific.net/AMR.569.666Suche in Google Scholar

2 Alsaadi, N.: Assessment and Enhancement of the Manufacturing Productivity through Discrete Event Simulation. IOP Conference Series: Materials Science and Engineering 1222 (2022) 1, 012011 10.1088/1757-899X/1222/1/012011Suche in Google Scholar

3 Pulido, R.; Borreguero-Sanchidrián, T.; García-Sánchez, A., Ortega-Mier, M.: Analysis of the Robustness of Production Scheduling in Aeronautical Manufacturing using Simulation: A Case Study. IFIP Advances in Information and Communication Technology 517 (2017), S. 174–183 10.1007/978-3-319-72905-3_16Suche in Google Scholar

4 Konold, P.; Reger, H.: Praxis der Montagetechnik. 2. Aufl., Vieweg+Teubner Verlag, Wiesbaden 2003 10.1007/978-3-663-01609-0Suche in Google Scholar

5 Verein Deutscher Ingenieure e. V. (Hrsg.): VDI 3633 Part 1: Simulation of Systems in Materials Handling, Logistics and Production-Fundamentals. VDI, Düsseldorf 2014Suche in Google Scholar

6 Zhou, W.; Li, S.; Huang, Y.; Wang, J.: Simulation-based Planning of a Kind of Complex Product General Assembly Line. Procedia CIRP 76 (2018), S. 25–30 10.1016/j.procir.2018.01.032Suche in Google Scholar

7 Patil, M.; Deokar, S.; Joshi, A.: A Literature Review on Assembly Line Optimization using Data Structure Algorithm. International Journal of Science and Research Archive 11 (2024) 1, S. 2279–2289 10.30574/ijsra.2024.11.1.0307Suche in Google Scholar

8 Rachner, J.; Kaven, L.; Voet, F.; Göppert, A.; Schmitt, R.: Simulation-based Potential Analysis of Line-less Assembly Systems in the Automotive Industry. Annals of Scientific Society for Assembly, Handling and Industrial Robotics (2022) S. 41–51 10.1007/978-3-031-10071-0_4Suche in Google Scholar

9 Dewa, M.; Chidzuu, L.: Managing Bottlenecks in Manual Automobile Assembly Systems Using Discrete Event Simulation. South African Journal of Industrial Engineering 24 (2013) 2, S. 155–166 10.7166/24-2-567Suche in Google Scholar

10 Marsh, R.; Jonik, M.; Lanham, J.; Cheung, W.; Newnes, L.; Mileham, A.: Modelling an Assembly Process Using a Close Coupled Generative Cost Model and a Discrete Event Simulation. International Journal of Computer Integrated Manufacturing 23 (2010) 3, S. 257–269 10.1080/09511920903529248Suche in Google Scholar

11 Holt, R.; Simmons, L.; Walden, C.; Dennis, G.; Hill, T.: Layout Analysis using Discrete Event Simulation: A Case Study”. Proceedings of the 2010 Industrial Engineering Research ConferenceSuche in Google Scholar

12 Scholl, A.; Becker, C.: State-of-the-Art Exact and Heuristic Solution Procedures for simple Assembly Line Balancing. European Journal of Operational Research 168 (2006) 3, S. 666–693 10.1016/j.ejor.2004.07.022Suche in Google Scholar

13 Liu, S.; Jiang, S.; Hou, K.: An Analysis on the Automobile Interior Assembly Line Balancing based on eM-plant. Proceedings of the 2nd International Conference on Computer Application and System Modeling (2012) 10.2991/iccasm.2012.1Suche in Google Scholar

14 Breznik, M.; Buchmeister, B.; Vujica Herzog, N.: Assembly Line Optimization Using MTM Time Standard and Simulation Modeling – A Case Study. Applied Science 13 (2023) 10, 6265 10.3390/app13106265Suche in Google Scholar

15 El-Khalil, R.: Simulation Analysis for Managing and Improving Productivity. Journal of Manufacturing Technology Management, 26 (2015) 1, S. 36–56 10.1108/jmtm-03-2013-0024Suche in Google Scholar

16 Ziarnetzky, T.; Mönch, L.; Biele, A.: „Simulation of low-volume mixed Model Assembly Lines: Modeling Aspects and Case Study. Proceedings of the Winter Simulation Conference (2014), S. 2101–2112 10.1109/WSC.2014.7020055Suche in Google Scholar

17 Scott, H.: Modelling Aircraft Assembly Operations. Proceedings of the Winter Simulation Conference (1994), S. 920–927 10.1109/WSC.1994.717469Suche in Google Scholar

18 Wiendahl, H.-P.; Hegenscheidt, M.: Verfügbarkeit von Montagesystemen. In: Montage in der industriellen Produktion. Springer-Verlag, Berlin, Heidelberg 2012 10.1007/978-3-642-29061-9_12Suche in Google Scholar

19 Bangsow, S: Tecnomatix Plant Simulation – Modeling and Programming by Means of Examples. 2. Aufl., Springer International, Cham 2020 10.1007/978-3-030-41544-0Suche in Google Scholar

20 Lödding, H: Verfahren der Fertigungssteuerung. 3. Aufl., Springer-Verlag, Berlin, Heidelberg 2016 10.1007/978-3-662-48459-3Suche in Google Scholar

Published Online: 2024-09-07
Published in Print: 2024-09-20

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zwf-2024-1114/pdf
Button zum nach oben scrollen