1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
Abstract
Four divinylphenylene-bridged diruthenium complexes [{Ru(CO)(P i Pr3)2(L-κ 2 [N,O] – )}2(μ-CH=CH-C6H4-CH=CH-1,4)] (2a–2d) with N,O-chelating 2-hydroxypyridine and 2-hydroxy- or 8-hydroxyquinoline ligands are presented. They were studied by NMR spectroscopy, electrochemical methods and, in their neutral and oxidized states, by IR, UV/Vis/NIR and, if applicable, by EPR spectroscopy. The experimental studies are complimented by (TD-)DFT calculations. Our results indicate that the pyridine-olate complexes 2a,b exist as three isomers with a ratio of about 78:20:2 that differ with respect to the orientation of the N and O donors relative to the CO and alkenyl ligands in the equatorial coordination plane. Only the isomer with both imine N donors trans to the alkenyl ligand is observed for complexes 2c,d with quinolinato ligands. All complexes undergo two consecutive, chemically and electrochemically reversible one-electron oxidations at low potentials. Our results indicate strong contributions of the divinylphenylene bridge to the redox processes and an even delocalization of the electron hole and the unpaired spin density over the entire π-conjugated divinylphenylene diruthenium backbone with only minor involvement of the peripherally attached κ 2 [N,O] – donor ligands.
Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.
Funding source: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Santos, A., López, J., Montoya, J., Noheda, P., Romero, A., Echavarren, A. M. Organometallics 1994, 13, 3605–3615; https://doi.org/10.1021/om00021a037.Suche in Google Scholar
2. Jia, G., Wu, W. F., Yeung, R. C. Y., Xia, H. P. J. Organomet. Chem. 1997, 539, 53–59; https://doi.org/10.1016/s0022-328x(97)00080-6.Suche in Google Scholar
3. Seetharaman, S. K., Chung, M.-C., Englich, U., Ruhlandt-Senge, K., Sponsler, M. B. Inorg. Chem. 2007, 46, 561–567; https://doi.org/10.1021/ic061389f.Suche in Google Scholar PubMed
4. Maurer, J., Sarkar, B., Schwederski, B., Kaim, W., Winter, R. F., Záliš, S. Organometallics 2006, 25, 3701–3712; https://doi.org/10.1021/om0602660.Suche in Google Scholar
5. Wu, X. H., Jin, S., Liang, J. H., Li, Z. Y., Yu, G.-A., Liu, S. H. Organometallics 2009, 28, 2450–2459; https://doi.org/10.1021/om900018y.Suche in Google Scholar
6. Man, W. Y., Xia, J.-L., Brown, N. J., Farmer, J. D., Yufit, D. S., Howard, J. A. K., Liu, S. H., Low, P. J. Organometallics 2011, 30, 1852–1858; https://doi.org/10.1021/om1010534.Suche in Google Scholar
7. Wuttke, E., Hervault, Y.-M., Polit, W., Linseis, M., Erler, P., Rigaut, S., Winter, R. F. Organometallics 2014, 33, 4672–4686; https://doi.org/10.1021/om400642j.Suche in Google Scholar
8. Scheerer, S., Rotthowe, N., Abdel-Rahman, O. S., He, X., Rigaut, S., Kvapilová, H., Záliš, S., Winter, R. F. Inorg. Chem. 2015, 54, 3387–3402; https://doi.org/10.1021/ic503075e.Suche in Google Scholar PubMed
9. Kong, D.-D., Xue, L.-S., Jang, R., Liu, B., Meng, X.-G., Jin, S., Ou, Y.-P., Hao, X., Liu, S.-H. Chem. Eur J. 2015, 21, 9895–9904; https://doi.org/10.1002/chem.201500509.Suche in Google Scholar PubMed
10. Zhang, J., Sun, C.-F., Wu, X.-H., Zhang, M.-X., Yin, J., Yu, G.-A., Liu, S. H. Int. J. Electrochem. Sci. 2016, 11, 7875–7889; https://doi.org/10.20964/2016.09.34.Suche in Google Scholar
11. Gómez-Lor, B., Santos, A., Ruiz, M., Echavarren, A. M. Eur. J. Inorg. Chem. 2001, 2305–2310; https://doi.org/10.1002/1099-0682(200109)2001:9<2305::aid-ejic2305>3.0.co;2-t.10.1002/1099-0682(200109)2001:9<2305::AID-EJIC2305>3.0.CO;2-TSuche in Google Scholar
12. Pfaff, U., Hildebrandt, A., Korb, M., Oßwald, S., Linseis, M., Schreiter, K., Spange, S., Winter, R. F., Lang, H. Chem. Eur J. 2016, 22, 783–801; https://doi.org/10.1002/chem.201503687.Suche in Google Scholar
13. Liu, W.-X., Yan, F., Qian, S.-L., Ye, J.-Y., Liu, X., Yu, M.-X., Wu, X.-H., Le, M.-L., Zhou, Z.-Y., Liu, S.-H., Low, P. J., Jin, S. Eur. J. Inorg. Chem. 2017, 2017, 5015–5026; https://doi.org/10.1002/ejic.201701036.Suche in Google Scholar
14. Hua, S., Xia, H., Wan, K. L., Yeung, R. C. Y., Hu, Q. H., Jia, G. J. Organomet. Chem. 2003, 683, 331–336.10.1016/S0022-328X(03)00704-6Suche in Google Scholar
15. Li, F., Cheng, J., Chai, X., Jin, S., Wu, X., Yu, G.-A., Liu, S. H., Chen, G. Z. Organometallics 2011, 30, 1830–1837; https://doi.org/10.1021/om100932u.Suche in Google Scholar
16. Ou, Y.-P., Jiang, C., Wu, D., Xia, J., Yin, J., Jin, S., Yu, G.-A., Liu, S. H. Organometallics 2011, 30, 5763–5770; https://doi.org/10.1021/om200622q.Suche in Google Scholar
17. Mücke, P., Zabel, M., Edge, R., Collison, D., Clément, S., Záliš, S., Winter, R. F., Winter, R. F. J. Organomet. Chem. 2011, 696, 3186–3197; https://doi.org/10.1016/j.jorganchem.2011.06.028.Suche in Google Scholar
18. Linseis, M., Záliš, S., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2012, 134, 16671–16692; https://doi.org/10.1021/ja3059606.Suche in Google Scholar
19. Chen, J., Wuttke, E., Polit, W., Exner, T., Winter, R. F. J. Am. Chem. Soc. 2013, 135, 3391–3394; https://doi.org/10.1021/ja400673c.Suche in Google Scholar
20. Zhang, J., Ou, Y., Xu, M., Sun, C., Yin, J., Yu, G.-A., Liu, S. H. Eur. J. Inorg. Chem. 2014, 2941–2951; https://doi.org/10.1002/ejic.201402106.Suche in Google Scholar
21. Wuttke, E., Fink, D., Anders, P., Maria Hoyt, A.-L., Polit, W., Linseis, M., Winter, R. F. J. Organomet. Chem. 2016, 821, 4–8; https://doi.org/10.1016/j.jorganchem.2016.02.031.Suche in Google Scholar
22. Oßwald, S., Breimaier, S., Linseis, M., Winter, R. F. Organometallics 2017, 36, 1993–2003; https://doi.org/10.1021/acs.organomet.7b00194.Suche in Google Scholar
23. Rotthowe, N., Zwicker, J., Winter, R. F. Organometallics 2019, 38, 2782–2799; https://doi.org/10.1021/acs.organomet.9b00318.Suche in Google Scholar
24. Ou, Y.-P., Zhang, J., Hu, Y., Yin, J., Chi, C., Liu, S. H. Dalton Trans. 2020, 49, 16877–16886; https://doi.org/10.1039/d0dt02883e.Suche in Google Scholar PubMed
25. Xia, H. P., Yeung, R. C. Y., Jia, G. Organometallics 1998, 17, 4762–4768; https://doi.org/10.1021/om9804935.Suche in Google Scholar
26. Liu, S. H., Chen, Y., Wan, K. L., Wen, T. B., Zhou, Z., Lo, M. F., Williams, I. D., Jia, G. Organometallics 2002, 21, 4984–4992; https://doi.org/10.1021/om020442e.Suche in Google Scholar
27. Liu, S. H., Xia, H., Wen, T. B., Zhou, Z., Jia, G. Organometallics 2003, 22, 737–743; https://doi.org/10.1021/om0207663.Suche in Google Scholar
28. Maurer, J., Winter, R. F., Sarkar, B., Záliš, S. Solid State Electrochem 2005, 9, 738–749; https://doi.org/10.1007/s10008-005-0689-z.Suche in Google Scholar
29. Yuan, P., Wu, X.-H., Yu, G.-A., Du, D., Liu, S. H. J. Organomet. Chem. 2007, 692, 3588–3592; https://doi.org/10.1016/j.jorganchem.2007.04.040.Suche in Google Scholar
30. Abdel-Rahman, O. S., Maurer, J., Záliš, S., Winter, R. F. Organometallics 2015, 34, 3611–3628; https://doi.org/10.1021/acs.organomet.5b00401.Suche in Google Scholar
31. Krejcik, M., Danek, M., Hartl, F. J. Electroanal. Chem. 1991, 317, 179–187; https://doi.org/10.1016/0022-0728(91)85012-e.Suche in Google Scholar
32. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Egidi, F. L. F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, 2016.Suche in Google Scholar
33. Mennucci, B., Tomasi, J. J. Chem. Phys. 1997, 106, 5151–5158; https://doi.org/10.1063/1.473558.Suche in Google Scholar
34. Cossi, M., Rega, N., Scalmani, G., Barone, V. J. Comput. Chem. 2003, 24, 669–681; https://doi.org/10.1002/jcc.10189.Suche in Google Scholar PubMed
35. Dolg, M., Wedig, U., Stoll, H., Preuss, H. J. Chem. Phys. 1987, 86, 866–872; https://doi.org/10.1063/1.452288.Suche in Google Scholar
36. Küchle, W., Dolg, M., Stoll, H., Preuss, H. J. Chem. Phys. 1994, 100, 7535–7532.10.1063/1.466847Suche in Google Scholar
37. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H. Theor. Chim. Acta 1990, 77, 123–141; https://doi.org/10.1007/bf01114537.Suche in Google Scholar
38. Hariharan, P. C., Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222; https://doi.org/10.1007/bf00533485.Suche in Google Scholar
39. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar
40. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396; https://doi.org/10.1103/physrevlett.78.1396.Suche in Google Scholar
41. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158–6170; https://doi.org/10.1063/1.478522.Suche in Google Scholar
42. O’Boyle, N. M., Tenderholt, A. L., Langner, K. M. J. Comput. Chem. 2008, 29, 839–845; https://doi.org/10.1002/jcc.20823.Suche in Google Scholar PubMed
43. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. J. Cheminf. 2012, 4, 17; https://doi.org/10.1186/1758-2946-4-17.Suche in Google Scholar PubMed PubMed Central
44. Tange, O. GNU Parallel 2018; https://doi.org/10.5281/zenodo.1146014.Suche in Google Scholar
45. Tange, O. USENIX Magazine 2011, 36, 42–47.Suche in Google Scholar
46. Humphrey, W., Dalke, A., Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Suche in Google Scholar PubMed
47. Merrick, J. P., Moran, D., Radom, L. J. Phys. Chem. A 2007, 111, 11683–11700; https://doi.org/10.1021/jp073974n.Suche in Google Scholar PubMed
48. Gopinathan, S., Deshpande, S., Gopinathan, C. Trans. Met. Chem. 1993, 18, 406–408.10.1007/BF00208181Suche in Google Scholar
49. Islam, A., Ghosh, M. K., Mondal, S., Brandão, P., Chattopadhyay, S. J. Coord. Chem. 2019, 72, 164–179; https://doi.org/10.1080/00958972.2018.1550578.Suche in Google Scholar
50. Pevny, F., Winter, R. F., Sarkar, B., Záliš, S. Dalton Trans. 2010, 8000–8011; https://doi.org/10.1039/c0dt00164c.Suche in Google Scholar PubMed
51. Camire Ohrenberg, N., Paradee, L. M., DeWitte, R. J., Chong, D., Geiger, W. E. Organometallics 2010, 29, 3179–3186; https://doi.org/10.1021/om100318q.Suche in Google Scholar
52. Stoll, M. E., Lovelace, S. R., Geiger, W. E., Schimanke, H., Hyla-Kryspin, I., Gleiter, R. J. Am. Chem. Soc. 1999, 121, 9343–9351; https://doi.org/10.1021/ja9914792.Suche in Google Scholar
53. Laws, D. R., Chong, D., Nash, K., Rheingold, A. L., Geiger, W. E. J. Am. Chem. Soc. 2008, 130, 9859–9870; https://doi.org/10.1021/ja801930q.Suche in Google Scholar PubMed
54. Sherlock, S. J., Boyd, D. C., Moasser, B., Gladfelter, W. L. Inorg. Chem. 1991, 20, 3626–3632; https://doi.org/10.1021/ic00019a011.Suche in Google Scholar
55. Katritzky, A. R., Jones, R. A. J. Chem. Soc. 1960, 2942–2947; https://doi.org/10.1039/jr9600002942.Suche in Google Scholar
56. Kanak, C. M. Bull. Chem. Soc. Jpn. 1984, 57, 261–266.Suche in Google Scholar
57. Záliš, S., Winter, R. F., Kaim, W. Chem. Rev. 2010, 254, 1383–1396; https://doi.org/10.1016/j.ccr.2010.02.020.Suche in Google Scholar
58. Das, R., Linseis, M., Schupp, S. M., Schmidt-Mende, L., Winter, R. F. Chem. Eur J. 2022, e202104403; https://doi.org/10.1002/chem.202104403.Suche in Google Scholar PubMed PubMed Central
59. Robin, M. B., Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247–422.10.1016/S0065-2792(08)60179-XSuche in Google Scholar
60. Malecki, G., Nycz, J. E., Ryrych, E., Ponikiewski, L., Nowak, M., Kusz, J., Pikies, J. J. Mol. Struct. 2010, 969, 130–138; https://doi.org/10.1016/j.molstruc.2010.01.054.Suche in Google Scholar
61. Favini, G., Raimondi, M., Gandolfo, C. Spectrochim. Acta Mol. Spectros 1968, 24, 207–214; https://doi.org/10.1016/0584-8539(68)80062-5.Suche in Google Scholar
62. Ou, Y.-P., Zhang, J., Xu, M., Xia, J., Hartl, F., Yin, J., Yu, G.-A., Liu, S. H. Chem. As. J. 2014, 9, 1152–1160; https://doi.org/10.1002/asia.201301544.Suche in Google Scholar PubMed
63. Pevny, F., Di Piazza, E., Norel, L., Drescher, M., Winter, R. F., Rigaut, S. Organometallics 2010, 29, 5912–5918; https://doi.org/10.1021/om1007133.Suche in Google Scholar
64. Ou, Y. P., Xia, J., Zhang, J., Xu, M., Yin, J., Yu, G. A., Liu, S. H. Chem. As. J. 2013, 8, 2023–2032; https://doi.org/10.1002/asia.201300419.Suche in Google Scholar PubMed
65. Maurer, J., Linseis, M., Sarkar, B., Schwederski, B., Niemeyer, M., Kaim, W., Záliš, S., Anson, C., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2008, 130, 259–268; https://doi.org/10.1021/ja075547t.Suche in Google Scholar PubMed
66. Ludwiczak, M., Bayda, M., Dutkiewicz, M., Frąckowiak, D., Majchrzak, M., Marciniak, B., Marciniec, B. Organometallics 2016, 35, 2454–2461; https://doi.org/10.1021/acs.organomet.6b00336.Suche in Google Scholar
67. Smith, R. C., Gleason, L. B., Protasiewicz, J. D. J. Mater. Chem. 2006, 16, 2445–2452; https://doi.org/10.1039/b601824f.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0303).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies