Startseite 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands

  • Obadah S. Abdel-Rahman , Michael Linseis , Alaa Alowais und Rainer F. Winter EMAIL logo
Veröffentlicht/Copyright: 8. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Four divinylphenylene-bridged diruthenium complexes [{Ru(CO)(P i Pr3)2(L-κ 2 [N,O] )}2(μ-CH=CH-C6H4-CH=CH-1,4)] (2a2d) with N,O-chelating 2-hydroxypyridine and 2-hydroxy- or 8-hydroxyquinoline ligands are presented. They were studied by NMR spectroscopy, electrochemical methods and, in their neutral and oxidized states, by IR, UV/Vis/NIR and, if applicable, by EPR spectroscopy. The experimental studies are complimented by (TD-)DFT calculations. Our results indicate that the pyridine-olate complexes 2a,b exist as three isomers with a ratio of about 78:20:2 that differ with respect to the orientation of the N and O donors relative to the CO and alkenyl ligands in the equatorial coordination plane. Only the isomer with both imine N donors trans to the alkenyl ligand is observed for complexes 2c,d with quinolinato ligands. All complexes undergo two consecutive, chemically and electrochemically reversible one-electron oxidations at low potentials. Our results indicate strong contributions of the divinylphenylene bridge to the redox processes and an even delocalization of the electron hole and the unpaired spin density over the entire π-conjugated divinylphenylene diruthenium backbone with only minor involvement of the peripherally attached κ 2 [N,O] donor ligands.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Rainer F. Winter, Fachbereich Chemie der Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany, E-mail:

Funding source: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Santos, A., López, J., Montoya, J., Noheda, P., Romero, A., Echavarren, A. M. Organometallics 1994, 13, 3605–3615; https://doi.org/10.1021/om00021a037.Suche in Google Scholar

2. Jia, G., Wu, W. F., Yeung, R. C. Y., Xia, H. P. J. Organomet. Chem. 1997, 539, 53–59; https://doi.org/10.1016/s0022-328x(97)00080-6.Suche in Google Scholar

3. Seetharaman, S. K., Chung, M.-C., Englich, U., Ruhlandt-Senge, K., Sponsler, M. B. Inorg. Chem. 2007, 46, 561–567; https://doi.org/10.1021/ic061389f.Suche in Google Scholar PubMed

4. Maurer, J., Sarkar, B., Schwederski, B., Kaim, W., Winter, R. F., Záliš, S. Organometallics 2006, 25, 3701–3712; https://doi.org/10.1021/om0602660.Suche in Google Scholar

5. Wu, X. H., Jin, S., Liang, J. H., Li, Z. Y., Yu, G.-A., Liu, S. H. Organometallics 2009, 28, 2450–2459; https://doi.org/10.1021/om900018y.Suche in Google Scholar

6. Man, W. Y., Xia, J.-L., Brown, N. J., Farmer, J. D., Yufit, D. S., Howard, J. A. K., Liu, S. H., Low, P. J. Organometallics 2011, 30, 1852–1858; https://doi.org/10.1021/om1010534.Suche in Google Scholar

7. Wuttke, E., Hervault, Y.-M., Polit, W., Linseis, M., Erler, P., Rigaut, S., Winter, R. F. Organometallics 2014, 33, 4672–4686; https://doi.org/10.1021/om400642j.Suche in Google Scholar

8. Scheerer, S., Rotthowe, N., Abdel-Rahman, O. S., He, X., Rigaut, S., Kvapilová, H., Záliš, S., Winter, R. F. Inorg. Chem. 2015, 54, 3387–3402; https://doi.org/10.1021/ic503075e.Suche in Google Scholar PubMed

9. Kong, D.-D., Xue, L.-S., Jang, R., Liu, B., Meng, X.-G., Jin, S., Ou, Y.-P., Hao, X., Liu, S.-H. Chem. Eur J. 2015, 21, 9895–9904; https://doi.org/10.1002/chem.201500509.Suche in Google Scholar PubMed

10. Zhang, J., Sun, C.-F., Wu, X.-H., Zhang, M.-X., Yin, J., Yu, G.-A., Liu, S. H. Int. J. Electrochem. Sci. 2016, 11, 7875–7889; https://doi.org/10.20964/2016.09.34.Suche in Google Scholar

11. Gómez-Lor, B., Santos, A., Ruiz, M., Echavarren, A. M. Eur. J. Inorg. Chem. 2001, 2305–2310; https://doi.org/10.1002/1099-0682(200109)2001:9<2305::aid-ejic2305>3.0.co;2-t.10.1002/1099-0682(200109)2001:9<2305::AID-EJIC2305>3.0.CO;2-TSuche in Google Scholar

12. Pfaff, U., Hildebrandt, A., Korb, M., Oßwald, S., Linseis, M., Schreiter, K., Spange, S., Winter, R. F., Lang, H. Chem. Eur J. 2016, 22, 783–801; https://doi.org/10.1002/chem.201503687.Suche in Google Scholar

13. Liu, W.-X., Yan, F., Qian, S.-L., Ye, J.-Y., Liu, X., Yu, M.-X., Wu, X.-H., Le, M.-L., Zhou, Z.-Y., Liu, S.-H., Low, P. J., Jin, S. Eur. J. Inorg. Chem. 2017, 2017, 5015–5026; https://doi.org/10.1002/ejic.201701036.Suche in Google Scholar

14. Hua, S., Xia, H., Wan, K. L., Yeung, R. C. Y., Hu, Q. H., Jia, G. J. Organomet. Chem. 2003, 683, 331–336.10.1016/S0022-328X(03)00704-6Suche in Google Scholar

15. Li, F., Cheng, J., Chai, X., Jin, S., Wu, X., Yu, G.-A., Liu, S. H., Chen, G. Z. Organometallics 2011, 30, 1830–1837; https://doi.org/10.1021/om100932u.Suche in Google Scholar

16. Ou, Y.-P., Jiang, C., Wu, D., Xia, J., Yin, J., Jin, S., Yu, G.-A., Liu, S. H. Organometallics 2011, 30, 5763–5770; https://doi.org/10.1021/om200622q.Suche in Google Scholar

17. Mücke, P., Zabel, M., Edge, R., Collison, D., Clément, S., Záliš, S., Winter, R. F., Winter, R. F. J. Organomet. Chem. 2011, 696, 3186–3197; https://doi.org/10.1016/j.jorganchem.2011.06.028.Suche in Google Scholar

18. Linseis, M., Záliš, S., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2012, 134, 16671–16692; https://doi.org/10.1021/ja3059606.Suche in Google Scholar

19. Chen, J., Wuttke, E., Polit, W., Exner, T., Winter, R. F. J. Am. Chem. Soc. 2013, 135, 3391–3394; https://doi.org/10.1021/ja400673c.Suche in Google Scholar

20. Zhang, J., Ou, Y., Xu, M., Sun, C., Yin, J., Yu, G.-A., Liu, S. H. Eur. J. Inorg. Chem. 2014, 2941–2951; https://doi.org/10.1002/ejic.201402106.Suche in Google Scholar

21. Wuttke, E., Fink, D., Anders, P., Maria Hoyt, A.-L., Polit, W., Linseis, M., Winter, R. F. J. Organomet. Chem. 2016, 821, 4–8; https://doi.org/10.1016/j.jorganchem.2016.02.031.Suche in Google Scholar

22. Oßwald, S., Breimaier, S., Linseis, M., Winter, R. F. Organometallics 2017, 36, 1993–2003; https://doi.org/10.1021/acs.organomet.7b00194.Suche in Google Scholar

23. Rotthowe, N., Zwicker, J., Winter, R. F. Organometallics 2019, 38, 2782–2799; https://doi.org/10.1021/acs.organomet.9b00318.Suche in Google Scholar

24. Ou, Y.-P., Zhang, J., Hu, Y., Yin, J., Chi, C., Liu, S. H. Dalton Trans. 2020, 49, 16877–16886; https://doi.org/10.1039/d0dt02883e.Suche in Google Scholar PubMed

25. Xia, H. P., Yeung, R. C. Y., Jia, G. Organometallics 1998, 17, 4762–4768; https://doi.org/10.1021/om9804935.Suche in Google Scholar

26. Liu, S. H., Chen, Y., Wan, K. L., Wen, T. B., Zhou, Z., Lo, M. F., Williams, I. D., Jia, G. Organometallics 2002, 21, 4984–4992; https://doi.org/10.1021/om020442e.Suche in Google Scholar

27. Liu, S. H., Xia, H., Wen, T. B., Zhou, Z., Jia, G. Organometallics 2003, 22, 737–743; https://doi.org/10.1021/om0207663.Suche in Google Scholar

28. Maurer, J., Winter, R. F., Sarkar, B., Záliš, S. Solid State Electrochem 2005, 9, 738–749; https://doi.org/10.1007/s10008-005-0689-z.Suche in Google Scholar

29. Yuan, P., Wu, X.-H., Yu, G.-A., Du, D., Liu, S. H. J. Organomet. Chem. 2007, 692, 3588–3592; https://doi.org/10.1016/j.jorganchem.2007.04.040.Suche in Google Scholar

30. Abdel-Rahman, O. S., Maurer, J., Záliš, S., Winter, R. F. Organometallics 2015, 34, 3611–3628; https://doi.org/10.1021/acs.organomet.5b00401.Suche in Google Scholar

31. Krejcik, M., Danek, M., Hartl, F. J. Electroanal. Chem. 1991, 317, 179–187; https://doi.org/10.1016/0022-0728(91)85012-e.Suche in Google Scholar

32. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Egidi, F. L. F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, 2016.Suche in Google Scholar

33. Mennucci, B., Tomasi, J. J. Chem. Phys. 1997, 106, 5151–5158; https://doi.org/10.1063/1.473558.Suche in Google Scholar

34. Cossi, M., Rega, N., Scalmani, G., Barone, V. J. Comput. Chem. 2003, 24, 669–681; https://doi.org/10.1002/jcc.10189.Suche in Google Scholar PubMed

35. Dolg, M., Wedig, U., Stoll, H., Preuss, H. J. Chem. Phys. 1987, 86, 866–872; https://doi.org/10.1063/1.452288.Suche in Google Scholar

36. Küchle, W., Dolg, M., Stoll, H., Preuss, H. J. Chem. Phys. 1994, 100, 7535–7532.10.1063/1.466847Suche in Google Scholar

37. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H. Theor. Chim. Acta 1990, 77, 123–141; https://doi.org/10.1007/bf01114537.Suche in Google Scholar

38. Hariharan, P. C., Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222; https://doi.org/10.1007/bf00533485.Suche in Google Scholar

39. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

40. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396; https://doi.org/10.1103/physrevlett.78.1396.Suche in Google Scholar

41. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158–6170; https://doi.org/10.1063/1.478522.Suche in Google Scholar

42. O’Boyle, N. M., Tenderholt, A. L., Langner, K. M. J. Comput. Chem. 2008, 29, 839–845; https://doi.org/10.1002/jcc.20823.Suche in Google Scholar PubMed

43. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. J. Cheminf. 2012, 4, 17; https://doi.org/10.1186/1758-2946-4-17.Suche in Google Scholar PubMed PubMed Central

44. Tange, O. GNU Parallel 2018; https://doi.org/10.5281/zenodo.1146014.Suche in Google Scholar

45. Tange, O. USENIX Magazine 2011, 36, 42–47.Suche in Google Scholar

46. Humphrey, W., Dalke, A., Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Suche in Google Scholar PubMed

47. Merrick, J. P., Moran, D., Radom, L. J. Phys. Chem. A 2007, 111, 11683–11700; https://doi.org/10.1021/jp073974n.Suche in Google Scholar PubMed

48. Gopinathan, S., Deshpande, S., Gopinathan, C. Trans. Met. Chem. 1993, 18, 406–408.10.1007/BF00208181Suche in Google Scholar

49. Islam, A., Ghosh, M. K., Mondal, S., Brandão, P., Chattopadhyay, S. J. Coord. Chem. 2019, 72, 164–179; https://doi.org/10.1080/00958972.2018.1550578.Suche in Google Scholar

50. Pevny, F., Winter, R. F., Sarkar, B., Záliš, S. Dalton Trans. 2010, 8000–8011; https://doi.org/10.1039/c0dt00164c.Suche in Google Scholar PubMed

51. Camire Ohrenberg, N., Paradee, L. M., DeWitte, R. J., Chong, D., Geiger, W. E. Organometallics 2010, 29, 3179–3186; https://doi.org/10.1021/om100318q.Suche in Google Scholar

52. Stoll, M. E., Lovelace, S. R., Geiger, W. E., Schimanke, H., Hyla-Kryspin, I., Gleiter, R. J. Am. Chem. Soc. 1999, 121, 9343–9351; https://doi.org/10.1021/ja9914792.Suche in Google Scholar

53. Laws, D. R., Chong, D., Nash, K., Rheingold, A. L., Geiger, W. E. J. Am. Chem. Soc. 2008, 130, 9859–9870; https://doi.org/10.1021/ja801930q.Suche in Google Scholar PubMed

54. Sherlock, S. J., Boyd, D. C., Moasser, B., Gladfelter, W. L. Inorg. Chem. 1991, 20, 3626–3632; https://doi.org/10.1021/ic00019a011.Suche in Google Scholar

55. Katritzky, A. R., Jones, R. A. J. Chem. Soc. 1960, 2942–2947; https://doi.org/10.1039/jr9600002942.Suche in Google Scholar

56. Kanak, C. M. Bull. Chem. Soc. Jpn. 1984, 57, 261–266.Suche in Google Scholar

57. Záliš, S., Winter, R. F., Kaim, W. Chem. Rev. 2010, 254, 1383–1396; https://doi.org/10.1016/j.ccr.2010.02.020.Suche in Google Scholar

58. Das, R., Linseis, M., Schupp, S. M., Schmidt-Mende, L., Winter, R. F. Chem. Eur J. 2022, e202104403; https://doi.org/10.1002/chem.202104403.Suche in Google Scholar PubMed PubMed Central

59. Robin, M. B., Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247–422.10.1016/S0065-2792(08)60179-XSuche in Google Scholar

60. Malecki, G., Nycz, J. E., Ryrych, E., Ponikiewski, L., Nowak, M., Kusz, J., Pikies, J. J. Mol. Struct. 2010, 969, 130–138; https://doi.org/10.1016/j.molstruc.2010.01.054.Suche in Google Scholar

61. Favini, G., Raimondi, M., Gandolfo, C. Spectrochim. Acta Mol. Spectros 1968, 24, 207–214; https://doi.org/10.1016/0584-8539(68)80062-5.Suche in Google Scholar

62. Ou, Y.-P., Zhang, J., Xu, M., Xia, J., Hartl, F., Yin, J., Yu, G.-A., Liu, S. H. Chem. As. J. 2014, 9, 1152–1160; https://doi.org/10.1002/asia.201301544.Suche in Google Scholar PubMed

63. Pevny, F., Di Piazza, E., Norel, L., Drescher, M., Winter, R. F., Rigaut, S. Organometallics 2010, 29, 5912–5918; https://doi.org/10.1021/om1007133.Suche in Google Scholar

64. Ou, Y. P., Xia, J., Zhang, J., Xu, M., Yin, J., Yu, G. A., Liu, S. H. Chem. As. J. 2013, 8, 2023–2032; https://doi.org/10.1002/asia.201300419.Suche in Google Scholar PubMed

65. Maurer, J., Linseis, M., Sarkar, B., Schwederski, B., Niemeyer, M., Kaim, W., Záliš, S., Anson, C., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2008, 130, 259–268; https://doi.org/10.1021/ja075547t.Suche in Google Scholar PubMed

66. Ludwiczak, M., Bayda, M., Dutkiewicz, M., Frąckowiak, D., Majchrzak, M., Marciniak, B., Marciniec, B. Organometallics 2016, 35, 2454–2461; https://doi.org/10.1021/acs.organomet.6b00336.Suche in Google Scholar

67. Smith, R. C., Gleason, L. B., Protasiewicz, J. D. J. Mater. Chem. 2006, 16, 2445–2452; https://doi.org/10.1039/b601824f.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0303).


Received: 2022-12-16
Accepted: 2023-01-03
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0303/html
Button zum nach oben scrollen