Abstract
The silicides RE3Pd20Si6 (RE = Sc, Y and Lu) were synthesized from the elements by arc-melting. The structures of Y3Pd20Si6 and Lu3Pd20Si6 were refined from single crystal X-ray diffractometer data: Mg3Ni20B6 type,
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kvenvolden, K. A. Org. Geochem. 1995, 23, 997–1008; https://doi.org/10.1016/0146-6380(96)00002-2.Search in Google Scholar
2. Veluswamy, H. R., Kumar, A., Seo, Y., Lee, J. D., Linga, P. Appl. Energy 2018, 216, 262–285; https://doi.org/10.1016/j.apenergy.2018.02.059.Search in Google Scholar
3. Ripmeester, J. A., Alavi, S., Ratcliffe, C. I. An introduction to clathrate hydrate science. In Clathrate Hydrates: Molecular Science and Characterization; Ripmeester, J. A., Alavi, S., Eds.; Wiley-VCH: Weinheim, 2022.10.1002/9783527695058Search in Google Scholar
4. Kasper, J. S., Hagenmuller, P., Pouchard, M., Cros, C. Science 1965, 150, 1713–1714; https://doi.org/10.1126/science.150.3704.1713.Search in Google Scholar PubMed
5. Slack, G. A. New materials and performance limits for thermoelectric cooling. In CRC Handbook of Thermoelectrics; Rowe, D. M., Ed.; CRC Press: Boca Raton, FL, USA, 1995, pp. 407–440.10.1201/9781420049718.ch34Search in Google Scholar
6. Beekman, M., Nolas, G. S. J. Mater. Chem. 2008, 18, 842–851; https://doi.org/10.1039/b706808e.Search in Google Scholar
7. Shevelkov, A. V., Kovnir, K. Zintl clathrates. In Structure and Bonding; Springer: Berlin, Germany, Vol. 990, 2011; pp. 97–142.10.1007/430_2010_25Search in Google Scholar
8. Nolas, G. S. The Physics and Chemistry of Inorganic Clathrates; Springer: Philadelphia, NY, USA, 2014.10.1007/978-94-017-9127-4Search in Google Scholar
9. Cros, C., Pouchard, M., Hagenmuller, P. J. Solid State Chem. 1970, 2, 570–581; https://doi.org/10.1016/0022-4596(70)90053-8.Search in Google Scholar
10. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar
11. Schäfer, M. C., Bobev, S. Materials 2016, 9, 236; https://doi.org/10.3390/ma9040236.Search in Google Scholar PubMed PubMed Central
12. Stegmaier, S., Hlukhyy, V., Fässler, T. F. Z. Anorg. Allg. Chem. 2020, 646, 1073–1078; https://doi.org/10.1002/zaac.201900253.Search in Google Scholar
13. Hübner, J.-M., Jung, W., Schmidt, M., Bobnar, M., Koželj, P., Böhme, B., Baitinger, M., Etter, M., Grin, Yu., Schwarz, U. Inorg. Chem. 2021, 60, 2160–2167; https://doi.org/10.1021/acs.inorgchem.0c02357.Search in Google Scholar PubMed PubMed Central
14. Oftedal, I. Nor. Geol. Tidsskr. 1926, 8, 250–257.Search in Google Scholar
15. Jeitschko, W., Braun, D. Acta Crystallogr. B 1977, 33, 3401–3406; https://doi.org/10.1107/s056774087701108x.Search in Google Scholar
16. Nolas, G. S., Morelli, D. T., Tritt, T. M. Annu. Rev. Mater. Sci. 1999, 29, 89–116; https://doi.org/10.1146/annurev.matsci.29.1.89.Search in Google Scholar
17. Sales, B. C. Filled Skutterudites. Handbook on the Physics and Chemistry of Rare Earths, Vol. 33, 2003; pp. 1–34.10.1016/S0168-1273(02)33001-0Search in Google Scholar
18. Rull-Bravo, M., Moure, A., Fernández, J. F., Martín-González, M. RSC Adv. 2015, 5, 41653–41667; https://doi.org/10.1039/c5ra03942h.Search in Google Scholar
19. Eisenmann, B., Schäfer, H. J. Less-Common Met. 1986, 123, 89–94; https://doi.org/10.1016/0022-5088(86)90118-9.Search in Google Scholar
20. Hodeau, J. L., Chenavas, J., Marezio, M., Remeika, J. P. Solid State Commun. 1980, 36, 839–845; https://doi.org/10.1016/0038-1098(80)90125-8.Search in Google Scholar
21. Michor, H., Berger, S., El Hagary, M., Paul, C., Bauer, E., Hilscher, G., Rogl, P., Giester, G. Phys. Rev. B 2003, 67, 224428; https://doi.org/10.1103/physrevb.67.224428.Search in Google Scholar
22. Gribanov, A., Grytsiv, A., Royanian, E., Rogl, P., Bauer, E., Giester, G., Seropegin, Y. D. J. Solid State Chem. 2008, 181, 2964–2975; https://doi.org/10.1016/j.jssc.2008.07.010.Search in Google Scholar
23. Tursina, A. I., Gribanov, A. V., Seropegin, Y. D., Kuyukov, K. V., Bodak, O. I. J. Alloys Compd. 2002, 347, 121–123; https://doi.org/10.1016/s0925-8388(02)00758-2.Search in Google Scholar
24. Sefat, A. S., Palasyuk, A. M., Bud’ko, S. L., Corbett, J. D., Canfield, P. C. J. Solid State Chem. 2008, 181, 282–293; https://doi.org/10.1016/j.jssc.2007.11.029.Search in Google Scholar
25. Stadelmaier, H. H., Draughn, R. A., Hofer, G. Z. Metallkd. 1963, 54, 640–644; https://doi.org/10.1515/ijmr-1963-541104.Search in Google Scholar
26. Westgren, A. Jernkontorets Ann. 1933, 111, 501–512.Search in Google Scholar
27. Gribanov, A. V., Seropegin, Yu. D., Bodak, O. I. J. Alloys Compd. 1994, 204, L9–L11; https://doi.org/10.1016/0925-8388(94)90057-4.Search in Google Scholar
28. Takeda, N., Kitagawa, J., Ishikawa, M. J. Phys. Soc. Jpn. 1995, 64, 387–390; https://doi.org/10.1143/jpsj.64.387.Search in Google Scholar
29. Kitagawa, J., Takeda, N., Ishikawa, M. J. Alloys Compd. 1997, 256, 48–56; https://doi.org/10.1016/s0925-8388(96)03020-4.Search in Google Scholar
30. Dönni, A., Keller, L., Fischer, P., Aoki, Y., Sato, H., Fauth, H., Zolliker, M., Komatsubara, T., Endoh, Y. J. Phys.: Condens. Matter 1998, 10, 7219–7229; https://doi.org/10.1088/0953-8984/10/32/013.Search in Google Scholar
31. Barakatova, Z. M., Seropegin, Y. D., Bodak, O. I., Belan, B. D. Russ. Metall. 1995, 1, 150–154.Search in Google Scholar
32. Budnyk, S. L., Prots, Yu., Grin, Yu., Kuz’ma, Yu. B. Abstr. 8th Int. Conf. Crystal Chem. Intermet. Compd., Lviv, Ukraine, September 25–28, 2002; p. 87.Search in Google Scholar
33. Zhak, O. V., Pasternitska, V., Malanyak, K. Visn. Lviv. Derzh. Univ. Ser. Khim. 2013, 54, 84–91.Search in Google Scholar
34. Orita, K., Uenishi, K., Tsubota, M., Shimada, Y., Onimaru, T., Takabatake, T., Kitagawa, J. J. Alloys Compd. 2015, 622, 676–680; https://doi.org/10.1016/j.jallcom.2014.10.144.Search in Google Scholar
35. Herrmannsdörfer, T., Dönni, A., Fischer, P., Keller, L., Janssen, S., Furrer, A., van den Brandt, B., Kitazawa, H. Mater. Sci. Forum 2004, 443–444, 233–238; https://doi.org/10.4028/www.scientific.net/msf.443-444.233.Search in Google Scholar
36. Prokofiev, A., Custers, J., Kriegisch, M., Laumann, S., Müller, M., Sassik, H., Svagera, R., Waas, M., Neumaier, K., Strydom, A. M., Paschen, S. Phys. Rev. B 2009, 80, 235107; https://doi.org/10.1103/physrevb.80.235107.Search in Google Scholar
37. Winkler, H., Laumann, S., Custers, J., Prokofiev, A., Paschen, S. Phys. Stat. Solidi B 2010, 247, 516–519; https://doi.org/10.1002/pssb.200983056.Search in Google Scholar
38. Mazza, F., Portnichenko, P. Y., Avdoshenko, S., Steffens, P., Boehm, M., Choi, E. S., Nikolo, M., Yan, X., Prokofiev, A., Paschen, S., Inosov, D. S. Phys. Rev. B 2022, 105, 174429; https://doi.org/10.1103/physrevb.105.174429.Search in Google Scholar
39. Watanabe, T., Yamaguchi, T., Nemoto, Y., Goto, T., Takeda, N., Suzuki, O., Kitazawa, H. J. Magn. Magn Mater. 2007, 310, 280–282; https://doi.org/10.1016/j.jmmm.2006.10.329.Search in Google Scholar
40. Yamaguchi, T., Nemoto, Y., Goto, T., Akatsu, M., Yanagisawa, T., Suzuki, O., Kitazawa, H., Komatsubara, T. Physica B 2005, 359–361, 296–298; https://doi.org/10.1016/j.physb.2005.01.112.Search in Google Scholar
41. Harmening, T., Mohr, D., Eckert, H., Al Alam, A., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 1839–1850; https://doi.org/10.1002/zaac.200900529.Search in Google Scholar
42. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Search in Google Scholar
43. Schubert, L., Doerenkamp, C., Haverkamp, S., Heletta, L., Eckert, H., Pöttgen, R. Dalton Trans. 2018, 47, 13025–13031; https://doi.org/10.1039/c8dt02083c.Search in Google Scholar PubMed
44. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Search in Google Scholar
45. Kuz’ma, Y. B., Voroshilov, Y. V. Sov. Phys. Crystallogr. 1967, 12, 297–298.Search in Google Scholar
46. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
47. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
48. Strydom, A. M. J. Alloys Compd. 2009, 480, 150–151; https://doi.org/10.1016/j.jallcom.2008.09.208.Search in Google Scholar
49. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed
50. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
51. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar
52. OriginPro 2016G (Version 9.3.2.303), OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Search in Google Scholar
53. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328), Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar
54. Dwight, A. E., Downey, J. W., Conner, R. A. Jr. Acta Crystallogr. 1961, 14, 75–76; https://doi.org/10.1107/s0365110x61000255.Search in Google Scholar
55. Diviš, M., Čermák, P., Javorský, P. Physica B 2012, 407, 276–279; https://doi.org/10.1016/j.physb.2011.10.048.Search in Google Scholar
56. Hough, D. W., Jaenicke Roessler, U., Zahn, G., Belger, A., Guembel, A., Oertel, C. G., Skrotzki, W. Cryst. Res. Technol. 2000, 35, 409–417; https://doi.org/10.1002/1521-4079(200004)35:4<409::aid-crat409>3.0.co;2-5.10.1002/1521-4079(200004)35:4<409::AID-CRAT409>3.0.CO;2-5Search in Google Scholar
57. Bodak, O., Demchenko, P., Seropegin, Yu., Fedorchuk, A. Z. Kristallogr. 2006, 221, 482–492; https://doi.org/10.1524/zkri.2006.221.5-7.482.Search in Google Scholar
58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
59. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies