Home The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
Article
Licensed
Unlicensed Requires Authentication

The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)

  • Lea Schubert , Jutta Kösters , Judith Bönnighausen and Rainer Pöttgen EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

The silicides RE3Pd20Si6 (RE = Sc, Y and Lu) were synthesized from the elements by arc-melting. The structures of Y3Pd20Si6 and Lu3Pd20Si6 were refined from single crystal X-ray diffractometer data: Mg3Ni20B6 type, F m 3 m , a = 1216.04(8) pm, wR = 0.0328, 219 F2 values, 14 variables for Y3Pd20Si6 and a = 1211.69(10) pm, wR = 0.0374, 217 F2 values, 14 variables for Lu3Pd20Si6. The isotypy of Sc3Pd20Si6 was confirmed on the basis of a Guinier powder pattern (a = 1202.8(3) pm). The RE3Pd20Si6 structures contain two crystallographically independent RE sites with relatively large coordination numbers, i.e. RE1@Pd16 and RE2@Pd12Si6. These polyhedra are arranged in a CaF2 related pattern with RE2@Pd12Si6 forming the fcc substructure and the RE1@Pd16 polyhedra filling the tetrahedral voids. The silicon atoms have slightly distorted square antiprismatic palladium coordination (4 × 239 pm Si–Pd1 and 4 × 245 pm Si–Pd2). Temperature dependent magnetic susceptibility measurements of the Lu3Pd20Si6 sample indicate Pauli paramagnetism.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:
Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kvenvolden, K. A. Org. Geochem. 1995, 23, 997–1008; https://doi.org/10.1016/0146-6380(96)00002-2.Search in Google Scholar

2. Veluswamy, H. R., Kumar, A., Seo, Y., Lee, J. D., Linga, P. Appl. Energy 2018, 216, 262–285; https://doi.org/10.1016/j.apenergy.2018.02.059.Search in Google Scholar

3. Ripmeester, J. A., Alavi, S., Ratcliffe, C. I. An introduction to clathrate hydrate science. In Clathrate Hydrates: Molecular Science and Characterization; Ripmeester, J. A., Alavi, S., Eds.; Wiley-VCH: Weinheim, 2022.10.1002/9783527695058Search in Google Scholar

4. Kasper, J. S., Hagenmuller, P., Pouchard, M., Cros, C. Science 1965, 150, 1713–1714; https://doi.org/10.1126/science.150.3704.1713.Search in Google Scholar PubMed

5. Slack, G. A. New materials and performance limits for thermoelectric cooling. In CRC Handbook of Thermoelectrics; Rowe, D. M., Ed.; CRC Press: Boca Raton, FL, USA, 1995, pp. 407–440.10.1201/9781420049718.ch34Search in Google Scholar

6. Beekman, M., Nolas, G. S. J. Mater. Chem. 2008, 18, 842–851; https://doi.org/10.1039/b706808e.Search in Google Scholar

7. Shevelkov, A. V., Kovnir, K. Zintl clathrates. In Structure and Bonding; Springer: Berlin, Germany, Vol. 990, 2011; pp. 97–142.10.1007/430_2010_25Search in Google Scholar

8. Nolas, G. S. The Physics and Chemistry of Inorganic Clathrates; Springer: Philadelphia, NY, USA, 2014.10.1007/978-94-017-9127-4Search in Google Scholar

9. Cros, C., Pouchard, M., Hagenmuller, P. J. Solid State Chem. 1970, 2, 570–581; https://doi.org/10.1016/0022-4596(70)90053-8.Search in Google Scholar

10. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

11. Schäfer, M. C., Bobev, S. Materials 2016, 9, 236; https://doi.org/10.3390/ma9040236.Search in Google Scholar PubMed PubMed Central

12. Stegmaier, S., Hlukhyy, V., Fässler, T. F. Z. Anorg. Allg. Chem. 2020, 646, 1073–1078; https://doi.org/10.1002/zaac.201900253.Search in Google Scholar

13. Hübner, J.-M., Jung, W., Schmidt, M., Bobnar, M., Koželj, P., Böhme, B., Baitinger, M., Etter, M., Grin, Yu., Schwarz, U. Inorg. Chem. 2021, 60, 2160–2167; https://doi.org/10.1021/acs.inorgchem.0c02357.Search in Google Scholar PubMed PubMed Central

14. Oftedal, I. Nor. Geol. Tidsskr. 1926, 8, 250–257.Search in Google Scholar

15. Jeitschko, W., Braun, D. Acta Crystallogr. B 1977, 33, 3401–3406; https://doi.org/10.1107/s056774087701108x.Search in Google Scholar

16. Nolas, G. S., Morelli, D. T., Tritt, T. M. Annu. Rev. Mater. Sci. 1999, 29, 89–116; https://doi.org/10.1146/annurev.matsci.29.1.89.Search in Google Scholar

17. Sales, B. C. Filled Skutterudites. Handbook on the Physics and Chemistry of Rare Earths, Vol. 33, 2003; pp. 1–34.10.1016/S0168-1273(02)33001-0Search in Google Scholar

18. Rull-Bravo, M., Moure, A., Fernández, J. F., Martín-González, M. RSC Adv. 2015, 5, 41653–41667; https://doi.org/10.1039/c5ra03942h.Search in Google Scholar

19. Eisenmann, B., Schäfer, H. J. Less-Common Met. 1986, 123, 89–94; https://doi.org/10.1016/0022-5088(86)90118-9.Search in Google Scholar

20. Hodeau, J. L., Chenavas, J., Marezio, M., Remeika, J. P. Solid State Commun. 1980, 36, 839–845; https://doi.org/10.1016/0038-1098(80)90125-8.Search in Google Scholar

21. Michor, H., Berger, S., El Hagary, M., Paul, C., Bauer, E., Hilscher, G., Rogl, P., Giester, G. Phys. Rev. B 2003, 67, 224428; https://doi.org/10.1103/physrevb.67.224428.Search in Google Scholar

22. Gribanov, A., Grytsiv, A., Royanian, E., Rogl, P., Bauer, E., Giester, G., Seropegin, Y. D. J. Solid State Chem. 2008, 181, 2964–2975; https://doi.org/10.1016/j.jssc.2008.07.010.Search in Google Scholar

23. Tursina, A. I., Gribanov, A. V., Seropegin, Y. D., Kuyukov, K. V., Bodak, O. I. J. Alloys Compd. 2002, 347, 121–123; https://doi.org/10.1016/s0925-8388(02)00758-2.Search in Google Scholar

24. Sefat, A. S., Palasyuk, A. M., Bud’ko, S. L., Corbett, J. D., Canfield, P. C. J. Solid State Chem. 2008, 181, 282–293; https://doi.org/10.1016/j.jssc.2007.11.029.Search in Google Scholar

25. Stadelmaier, H. H., Draughn, R. A., Hofer, G. Z. Metallkd. 1963, 54, 640–644; https://doi.org/10.1515/ijmr-1963-541104.Search in Google Scholar

26. Westgren, A. Jernkontorets Ann. 1933, 111, 501–512.Search in Google Scholar

27. Gribanov, A. V., Seropegin, Yu. D., Bodak, O. I. J. Alloys Compd. 1994, 204, L9–L11; https://doi.org/10.1016/0925-8388(94)90057-4.Search in Google Scholar

28. Takeda, N., Kitagawa, J., Ishikawa, M. J. Phys. Soc. Jpn. 1995, 64, 387–390; https://doi.org/10.1143/jpsj.64.387.Search in Google Scholar

29. Kitagawa, J., Takeda, N., Ishikawa, M. J. Alloys Compd. 1997, 256, 48–56; https://doi.org/10.1016/s0925-8388(96)03020-4.Search in Google Scholar

30. Dönni, A., Keller, L., Fischer, P., Aoki, Y., Sato, H., Fauth, H., Zolliker, M., Komatsubara, T., Endoh, Y. J. Phys.: Condens. Matter 1998, 10, 7219–7229; https://doi.org/10.1088/0953-8984/10/32/013.Search in Google Scholar

31. Barakatova, Z. M., Seropegin, Y. D., Bodak, O. I., Belan, B. D. Russ. Metall. 1995, 1, 150–154.Search in Google Scholar

32. Budnyk, S. L., Prots, Yu., Grin, Yu., Kuz’ma, Yu. B. Abstr. 8th Int. Conf. Crystal Chem. Intermet. Compd., Lviv, Ukraine, September 25–28, 2002; p. 87.Search in Google Scholar

33. Zhak, O. V., Pasternitska, V., Malanyak, K. Visn. Lviv. Derzh. Univ. Ser. Khim. 2013, 54, 84–91.Search in Google Scholar

34. Orita, K., Uenishi, K., Tsubota, M., Shimada, Y., Onimaru, T., Takabatake, T., Kitagawa, J. J. Alloys Compd. 2015, 622, 676–680; https://doi.org/10.1016/j.jallcom.2014.10.144.Search in Google Scholar

35. Herrmannsdörfer, T., Dönni, A., Fischer, P., Keller, L., Janssen, S., Furrer, A., van den Brandt, B., Kitazawa, H. Mater. Sci. Forum 2004, 443–444, 233–238; https://doi.org/10.4028/www.scientific.net/msf.443-444.233.Search in Google Scholar

36. Prokofiev, A., Custers, J., Kriegisch, M., Laumann, S., Müller, M., Sassik, H., Svagera, R., Waas, M., Neumaier, K., Strydom, A. M., Paschen, S. Phys. Rev. B 2009, 80, 235107; https://doi.org/10.1103/physrevb.80.235107.Search in Google Scholar

37. Winkler, H., Laumann, S., Custers, J., Prokofiev, A., Paschen, S. Phys. Stat. Solidi B 2010, 247, 516–519; https://doi.org/10.1002/pssb.200983056.Search in Google Scholar

38. Mazza, F., Portnichenko, P. Y., Avdoshenko, S., Steffens, P., Boehm, M., Choi, E. S., Nikolo, M., Yan, X., Prokofiev, A., Paschen, S., Inosov, D. S. Phys. Rev. B 2022, 105, 174429; https://doi.org/10.1103/physrevb.105.174429.Search in Google Scholar

39. Watanabe, T., Yamaguchi, T., Nemoto, Y., Goto, T., Takeda, N., Suzuki, O., Kitazawa, H. J. Magn. Magn Mater. 2007, 310, 280–282; https://doi.org/10.1016/j.jmmm.2006.10.329.Search in Google Scholar

40. Yamaguchi, T., Nemoto, Y., Goto, T., Akatsu, M., Yanagisawa, T., Suzuki, O., Kitazawa, H., Komatsubara, T. Physica B 2005, 359–361, 296–298; https://doi.org/10.1016/j.physb.2005.01.112.Search in Google Scholar

41. Harmening, T., Mohr, D., Eckert, H., Al Alam, A., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 1839–1850; https://doi.org/10.1002/zaac.200900529.Search in Google Scholar

42. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Search in Google Scholar

43. Schubert, L., Doerenkamp, C., Haverkamp, S., Heletta, L., Eckert, H., Pöttgen, R. Dalton Trans. 2018, 47, 13025–13031; https://doi.org/10.1039/c8dt02083c.Search in Google Scholar PubMed

44. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Search in Google Scholar

45. Kuz’ma, Y. B., Voroshilov, Y. V. Sov. Phys. Crystallogr. 1967, 12, 297–298.Search in Google Scholar

46. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

47. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

48. Strydom, A. M. J. Alloys Compd. 2009, 480, 150–151; https://doi.org/10.1016/j.jallcom.2008.09.208.Search in Google Scholar

49. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

50. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

51. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

52. OriginPro 2016G (Version 9.3.2.303), OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Search in Google Scholar

53. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328), Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

54. Dwight, A. E., Downey, J. W., Conner, R. A. Jr. Acta Crystallogr. 1961, 14, 75–76; https://doi.org/10.1107/s0365110x61000255.Search in Google Scholar

55. Diviš, M., Čermák, P., Javorský, P. Physica B 2012, 407, 276–279; https://doi.org/10.1016/j.physb.2011.10.048.Search in Google Scholar

56. Hough, D. W., Jaenicke Roessler, U., Zahn, G., Belger, A., Guembel, A., Oertel, C. G., Skrotzki, W. Cryst. Res. Technol. 2000, 35, 409–417; https://doi.org/10.1002/1521-4079(200004)35:4<409::aid-crat409>3.0.co;2-5.10.1002/1521-4079(200004)35:4<409::AID-CRAT409>3.0.CO;2-5Search in Google Scholar

57. Bodak, O., Demchenko, P., Seropegin, Yu., Fedorchuk, A. Z. Kristallogr. 2006, 221, 482–492; https://doi.org/10.1524/zkri.2006.221.5-7.482.Search in Google Scholar

58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

59. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

Received: 2023-01-19
Accepted: 2023-02-06
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0304/html
Scroll to top button