Startseite Structure and spectroscopic properties of etherates of the beryllium halides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structure and spectroscopic properties of etherates of the beryllium halides

  • Deniz F. Bekiş , Lewis R. Thomas-Hargreaves , Chantsalmaa Berthold , Sergei I. Ivlev und Magnus R. Buchner EMAIL logo
Veröffentlicht/Copyright: 8. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The synthesis of beryllium halide etherates and the solution behavior in benzene, dichloromethane, and chloroform was studied by NMR, IR, and Raman spectroscopy. Mononuclear units of [BeX2(L)2] (X = Cl, Br, I; L = Et2O, thf) were identified as the favorably formed species in solution. Treatment of the mononuclear diethyl ether beryllium halide adduct with one equivalent beryllium halide formed the dinuclear compounds [BeX2(OEt2)]2 (X = Cl, Br, I). The solid-state structures of [BeCl2(thf)2] and [BeBr2(thf)2] have been determined by single crystal X-ray diffraction analysis. [BeI2(thf)2] decomposed in all solvents. In CD2Cl2 the salt [Be(thf)4]I2 was formed, whereas in C6D6 and CDCl3, BeI2 precipitated and [BeI(thf)3]+, [Be(thf)4]2+ together with the thf ring-opening product [Be(μ2-O(CH2)4I)I(thf)]2 were observed in solution.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Magnus R. Buchner, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: BU2725/8-1

Award Identifier / Grant number: BU2725/8-2

Acknowledgement

M.R.B. thanks Prof. F. Kraus for moral and financial support as well as the provision of laboratory space. The DFG is gratefully acknowledged for financial support (BU2725/8-1/2).

  1. Author contributions: D.F.B., L.R.T-H. and C.B. performed the experiments as well as the IR and Raman spectroscopic measurements. D.F.B. and S.I.I. carried out the X-ray single crystal analysis. D.F.B., L.R.T-H. and M.R.B. performed the NMR spectroscopic measurements. M.R.B. originated the central idea and coordinated the work. D.F.B. and M.R.B. analysed the data and wrote the manuscript.

  2. Research funding: Deutsche Forschungsgemeinschaft: BU2725/8-1/2.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Buchner, M. R. Chem. Eur J. 2019, 25, 12018–12036; https://doi.org/10.1002/chem.201901766.Suche in Google Scholar PubMed

2. Walley, J. E., Gilliard, R. J.Jr. Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd: Hoboken, New Jersey, United States, 2021; pp. 1–14.10.1002/9781119951438.eibc2788Suche in Google Scholar

3. Ruhlandt-Senge, K., Bartlett, R. A., Olmstead, M. M., Power, P. P. Inorg. Chem. 1993, 32, 1724–1728; https://doi.org/10.1021/ic00061a031.Suche in Google Scholar

4. Niemeyer, M., Power, P. P. Inorg. Chem. 1997, 36, 4688–4696; https://doi.org/10.1021/ic970319t.Suche in Google Scholar PubMed

5. Paparo, A., Jones, C. Chem. Asian J. 2019, 14, 486–490; https://doi.org/10.1002/asia.201801800.Suche in Google Scholar PubMed

6. Paparo, A., Smith, C. D., Jones, C. Angew. Chem. Int. Ed. 2019, 58, 11459–11463; https://doi.org/10.1002/anie.201906609.Suche in Google Scholar PubMed

7. Jones, C., Stasch, A. Anal. Sci.: X-Ray Struct. Anal. Online 2007, 23, X115–X116; https://doi.org/10.2116/analscix.23.x115.Suche in Google Scholar

8. Blomstrand, C. W. Ber. Dtsch. Chem. Ges. 1876, 9, 853–862.10.1002/cber.187600901256Suche in Google Scholar

9. Turova, N. Ya., Novoselova, A. V., Semenenko, K. N. Z. Neorg. Khim. 1960, 5, 117–123.Suche in Google Scholar

10. Turova, N. Ya., Sitdykova, N. S., Novoselova, A. V., Semenenko, K. N. Z. Neorg. Khim. 1963, 8, 2115.Suche in Google Scholar

11. Semenenko, K. N., Lobkovskii, É. B., Simonov, M. A., Shumakov, A. I. J. Struct. Chem. 1977, 17, 460–461; https://doi.org/10.1007/bf00746669.Suche in Google Scholar

12. Bel’skii, V. K., Strel’tsova, N. R., Bulychev, B. M., Ivakina, L. V., Storozhenko, P. A. J. Struct. Chem. 1987, 28, 148–149.10.1007/BF00749567Suche in Google Scholar

13. Müller, M., Buchner, M. R. Chem. Eur J. 2019, 25, 11147–11156.10.1002/chem.201902414Suche in Google Scholar PubMed PubMed Central

14. Müller, M., Buchner, M. R. Inorg. Chem. 2019, 58, 13276–13284.10.1021/acs.inorgchem.9b02139Suche in Google Scholar PubMed

15. Buchner, M. R., Mülle, M., Spang, N. Dalton Trans. 2020, 49, 7708–7712; https://doi.org/10.1039/d0dt01442g.Suche in Google Scholar PubMed

16. Buchner, M. R., Thomas-Hargreaves, L. R., Kreuzer, L. K., Spang, N., Ivlev, S. I. Eur. J. Inorg. Chem. 2021, 2021, 4990–4997; https://doi.org/10.1002/ejic.202100812.Suche in Google Scholar

17. Kovar, R. A., Morgan, G. L. J. Am. Chem. Soc. 1970, 92, 5067–5072; https://doi.org/10.1021/ja00720a011.Suche in Google Scholar

18. Müller, M., Pielnhofer, F., Buchner, M. R. Dalton Trans. 2018, 47, 12506–12510.10.1039/C8DT01756ESuche in Google Scholar PubMed

19. Spang, N., Müller, M., Augustinov, W., Buchner, M. R. Z. Naturforsch. 2020, 75b, 939–949; https://doi.org/10.1515/znb-2020-0141.Suche in Google Scholar

20. Plieger, P. G., John, K. D., Keizer, T. S., McCleskey, T. M., Burrell, A. K., Martin, R. L. J. Am. Chem. Soc. 2004, 126, 14651–14658; https://doi.org/10.1021/ja046712x.Suche in Google Scholar PubMed

21. Buchanan, J. K., Plieger, P. G. Z. Naturforsch. 2020, 75b, 459–472; https://doi.org/10.1515/znb-2020-0007.Suche in Google Scholar

22. Viesser, R. V., Ducati, L. C., Tormena, C. F., Autschbach J. Phys. Chem. Chem. Phys. 2018, 20, 11247–11259.10.1039/C8CP01249KSuche in Google Scholar

23. Paparo, A., de Bruin-Dickason, C. N., Jones, C. Aust. J. Chem. 2020, 73, 1144; https://doi.org/10.1071/ch20129.Suche in Google Scholar

24. Braunschweig, H., Gruß, K. Z. Naturforsch. 2011, 66b, 55–57; https://doi.org/10.1515/znb-2011-0109.Suche in Google Scholar

25. Müller, M., Buchner, M. R. Angew. Chem. Int. Ed. 2018, 57, 9180–9184.10.1002/anie.201803667Suche in Google Scholar PubMed

26. Thomas-Hargreaves, L. R., Müller, M., Spang, N., Ivlev, S. I., Buchner, M. R. Organometallics 2021, 40, 3797–3807; https://doi.org/10.1021/acs.organomet.1c00524.Suche in Google Scholar

27. Müller, M., Buchner, M. R. Chem. Eur J. 2019, 25, 16257–16269.10.1002/chem.201903439Suche in Google Scholar PubMed PubMed Central

28. Müller, M., Buchner, M. R. Chem. Eur J. 2020, 26, 9915–9922.10.1002/chem.202000259Suche in Google Scholar PubMed PubMed Central

29. Otero, A., Fernández-Baeza, J., Antiñolo, A., Carrillo-Hermosilla, F., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L., Fernández-López, M., Rodríguez, A. M. López-Solera, I. Inorg. Chem. 2002, 41, 5193–5202; https://doi.org/10.1021/ic020319f.Suche in Google Scholar PubMed

30. Fedushkin, I. L., Lukoyanov, A. N., Hummert, M., Schumann, H. Z. Anorg. Allg. Chem. 2008, 634, 357–361; https://doi.org/10.1002/zaac.200700411.Suche in Google Scholar

31. Noor, A., Kretschmer, W. P., Glatz, G., Kempe, R. Inorg. Chem. 2011, 50, 4598–4606; https://doi.org/10.1021/ic200318h.Suche in Google Scholar PubMed

32. Travia, N. E., Monreal, M. J., Scott, B. L., Kiplinger, J. L. Dalton Trans. 2012, 41, 14514–14523; https://doi.org/10.1039/c2dt31676e.Suche in Google Scholar PubMed

33. Arrowsmith, M., Crimmin, R. M., Hill, M. S., Kociok-Köhn, G. Dalton Trans. 2013, 42, 9720–9726; https://doi.org/10.1039/c3dt51021b.Suche in Google Scholar PubMed

34. Buchner, M. R. Chem. Commun. 2020, 56, 8895–8907; https://doi.org/10.1039/d0cc03802d.Suche in Google Scholar PubMed

35. Buchner, M. R. Z. Naturforsch. 2020, 75b, 405–412; https://doi.org/10.1515/znb-2020-0006.Suche in Google Scholar

36. Naglav, D., Buchner, M. R., Bendt, G., Kraus, F., Schulz, S. Angew. Chem. Int. Ed. 2016, 55, 10562–10576; https://doi.org/10.1002/anie.201601809.Suche in Google Scholar PubMed

37. X-Area 1.8.1, STOE & Cie GmbH: Darmstadt, Germany, 2018.Suche in Google Scholar

38. Ivlev, S. I., Conrad, M., Kraus, F. Z. Kristallogr. 2019, 234, 415–418; https://doi.org/10.1515/zkri-2018-2147.Suche in Google Scholar

39. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

40. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar

41. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284.10.1107/S0021889811043202Suche in Google Scholar PubMed PubMed Central

42. Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Goodfellow, R., Granger, P. Pure Appl. Chem. 2001, 73, 1795–1818; https://doi.org/10.1351/pac200173111795.Suche in Google Scholar

43. MestreNova 14.2.1; Mestrelab Research S. L.: Santiago de Compostela, Spain, 2021.Suche in Google Scholar

44. Opus V7.2, Bruker Optik GmbH: Ettlingen, Germany, 2012.Suche in Google Scholar

45. Vasilief, I. QtiPlot V1.0.0-Rc13; Bucuresti: Romania, 2020.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0303).


Received: 2023-01-13
Accepted: 2023-01-16
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0303/html
Button zum nach oben scrollen