Abstract
The aerobic oxidation of copper(I) to copper(II) was studied in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium acetate [BMIm][OAc]. Temperatures above 100 °C promote the deprotonation of the C2 atom of the imidazolium ring and the dissolution of CuCl. 1H and 13C NMR spectra indicate the formation of the N-heterocyclic carbene (NHC) complex [NHC] CuICl under inert conditions. Upon aerobic oxidation, air-stable blue-green crystals of [BMIm]2[CuII 2(OAc)4Cl2] precipitate in high yield and the NHC is recovered. X-ray diffraction on a single-crystal of the complex salt revealed a monoclinic structure with space group P21/n. The centrosymmetric dinuclear acetate complex [Cu2(OAc)4Cl2]2– has the paddle-wheel motif and is weakly paramagnetic.
Acknowledgments
The authors thank Dr. I. Kuhnert for performing the DSC and TG measurements, Dr. G. S. Thakur and F. Pabst for the measurement and discussion of data on the magnetism and M. A. Herz for help in crystal structure solution. We are grateful to Prof. Dr. S. Kaskel for access to the Biologic device to record the cyclic voltammogram and to Prof. Dr. E. Brunner for access to the NMR, Raman and UV–Vis spectrometers.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest: The authors declare no conflict of interest.
References
1. Wasserscheid, P., Ed. Ionic Liquids in Synthesis; Wiley VCH: Weinheim (Germany), 2002.10.1002/3527600701Suche in Google Scholar
2. Hammond, O. S., Mudring, A.-V. Chem. Commun. 2022, 58, 3865–3892; https://doi.org/10.1039/d1cc06543b.Suche in Google Scholar PubMed
3. Zhang, T., Doert, T., Wang, H., Zhang, S., Ruck, M. Angew. Chem. Int. Ed. 2021, 60, 22148–22165; https://doi.org/10.1002/anie.202104035.Suche in Google Scholar PubMed PubMed Central
4. Taubert, A. Inorganic Nanomaterials Synthesis Using Ionic Liquids. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R. A., Ed.; John Wiley & Sons: Hoboken, NJ, 2016; pp. 1–14.10.1002/9781119951438.eibc0355.pub2Suche in Google Scholar
5. Janiak, C. AIMS Mater. Sci. 2014, 1, 41–44.10.3934/matersci.2014.1.41Suche in Google Scholar
6. Nockemann, P., Thijs, B., Pittois, S., Thoen, J., Glorieux, C., Van Hecke, K., Van Meervelt, L., Kirchner, B., Binnemans, K. J. Phys. Chem. B 2006, 110, 20978–20992; https://doi.org/10.1021/jp0642995.Suche in Google Scholar PubMed
7. Dupont, D., Renders, E., Raiguel, S., Binnemans, K. Chem. Commun. 2016, 52, 7032–7035; https://doi.org/10.1039/c6cc02350a.Suche in Google Scholar PubMed
8. Richter, J., Ruck, M. Molecules 2020, 25, 78; https://doi.org/10.3390/molecules25010078.Suche in Google Scholar PubMed PubMed Central
9. Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., Nyulászi, L. New J. Chem. 2010, 34, 3004; https://doi.org/10.1039/c0nj00380h.Suche in Google Scholar
10. Rodríguez, H., Gurau, G., Holbrey, J. D., Rogers, R. D. Chem. Commun. 2011, 47, 3222; https://doi.org/10.1039/c0cc05223j.Suche in Google Scholar PubMed
11. Chiarotto, I., Feroci, M., Inesi, A. New J. Chem. 2017, 41, 7840–7843; https://doi.org/10.1039/c7nj00779e.Suche in Google Scholar
12. Braunstein, P., Danopoulos, A. A., Simler, T. Chem. Rev. 2019, 119, 3730–3961; https://doi.org/10.1021/acs.chemrev.8b00505.Suche in Google Scholar PubMed
13. Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S., Lin, I. J. B. Chem. Rev. 2009, 109, 3561–3598; https://doi.org/10.1021/cr8005153.Suche in Google Scholar PubMed
14. Meng, G., Kakalis, L., Nolan, S. P., Szostak, M. Tetrahedron Lett. 2019, 60, 378–381; https://doi.org/10.1016/j.tetlet.2018.12.059.Suche in Google Scholar
15. Gurau, G., Rodriguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., Rogers, R. D. Angew. Chem. Int. Ed. 2011, 50, 12024–12026; https://doi.org/10.1002/anie.201105198.Suche in Google Scholar PubMed
16. Xu, A., Guo, X., Xu, R. Int. J. Biol. Macromol. 2015, 81, 1000–1004; https://doi.org/10.1016/j.ijbiomac.2015.09.058.Suche in Google Scholar PubMed
17. Liebner, F., Patel, I., Ebner, G., Becker, E., Horix, M., Potthast, A., Rosenau, T. Holzforschung 2010, 64, 161–166.10.1515/hf.2010.033Suche in Google Scholar
18. Richter, J., Knies, M., Ruck, M. Chemistry 2021, 10, 97–109; https://doi.org/10.1002/open.202000231.Suche in Google Scholar PubMed PubMed Central
19. Richter, J., Ruck, M. RSC Adv. 2019, 9, 29699–29710; https://doi.org/10.1039/c9ra06423k.Suche in Google Scholar PubMed PubMed Central
20. Jenniefer, S. J., Muthiah, P. T. Chem. Cent. J. 2013, 7, 1.10.1186/1752-153X-7-35Suche in Google Scholar PubMed PubMed Central
21. Serov, N. Y., Shtyrlin, V. G., Islamov, D. R., Kataeva, O. N., Krivolapov, D. B. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 981–986; https://doi.org/10.1107/s2056989018008538.Suche in Google Scholar PubMed PubMed Central
22. Bette, S., Costes, A., Kremer, R. K., Eggert, G., Tang, C. C., Dinnebier, R. E. Z. Anorg. Allg. Chem. 2019, 645, 988–997; https://doi.org/10.1002/zaac.201900125.Suche in Google Scholar
23. Seguin, A. K., Wrighton-Araneda, K., Cortés-Arriagada, D., Cruz, C., Venegas-Yazigi, D., Paredes-García, V. J. Mol. Struct. 2021, 1224, 129172; https://doi.org/10.1016/j.molstruc.2020.129172.Suche in Google Scholar
24. Bleaney, B., Bowers, K. D. Proc. R. Soc. A 1952, 214, 451–465.10.1098/rspa.1952.0181Suche in Google Scholar
25. Lin, Z., Han, D., Li, S. J. Therm. Anal. Calorim. 2012, 107, 471–475; https://doi.org/10.1007/s10973-011-1454-4.Suche in Google Scholar
26. Efimova, A., Hubrig, G., Schmidt, P. Thermochim. Acta 2013, 573, 162–169; https://doi.org/10.1016/j.tca.2013.09.023.Suche in Google Scholar
27. Efimova, A., Varga, J., Matuschek, G., Saraji-Bozorgzad, M. R., Denner, T., Zimmermann, R., Schmidt, P. J. Phys. Chem. B 2018, 122, 8738–8749; https://doi.org/10.1021/acs.jpcb.8b06416.Suche in Google Scholar PubMed
28. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R., Kozlowski, M. C. Chem. Rev. 2013, 113, 6234–6458; https://doi.org/10.1021/cr300527g.Suche in Google Scholar PubMed PubMed Central
29. Elie, M., Sguerra, F., Di Meo, F., Weber, M. D., Marion, R ., Grimault, A., Lohier, J. F., Stallivieri, A., Brosseau, A., Pansu, R. B., Renaud, J. L., Linares, M., Hamel, M., Costa, R. D., Gaillard, S. ACS Appl. Mater. Interfaces 2016, 8, 14678–14691 https://doi.org/10.1021/acsami.6b04647.Suche in Google Scholar PubMed
30. Vogler, A. Inorg. Chem. Commun. 2017, 84, 81–83; https://doi.org/10.1016/j.inoche.2017.06.031.Suche in Google Scholar
31. Hamann, J. N., Tuczek, F. Chem. Commun. 2014, 50, 2298–2300; https://doi.org/10.1039/c3cc47888b.Suche in Google Scholar PubMed
32. Cabaço, M. I., Besnard, M., Danten, Y., Coutinho, J. A. P. J. Phys. Chem. A 2012, 116, 1605–1620; https://doi.org/10.1021/jp211211n.Suche in Google Scholar PubMed
33. Marekha, B. A., Bria, M., Moreau, M., De Waele, I., Miannay, F. A., Smortsova, Y., Takamuku, T., Kalugin, O. N., Kiselev, M., Idrissi, A. J. Mol. Liq. 2015, 210, 227–237; https://doi.org/10.1016/j.molliq.2015.05.015.Suche in Google Scholar
34. Hollóczki, O., Firaha, D. S., Friedrich, J., Brehm, M., Cybik, R., Wild, M., Stark, A., Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907; https://doi.org/10.1021/jp4004399.Suche in Google Scholar PubMed
35. Vellé, A., Cebollada, A., Macías, R., Iglesias, M., Gil-Moles, M., Sanz Miguel, P. J. ACS Omega 2017, 2, 1392–1399; https://doi.org/10.1021/acsomega.7b00138.Suche in Google Scholar PubMed PubMed Central
36. Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., Mascetti, J., Danten, Y. J. Phys. Chem. A 2012, 116, 4890–4901; https://doi.org/10.1021/jp211689z.Suche in Google Scholar PubMed
37. Hesse-Ertelt, S., Heinze, T., Kosan, B., Schwikal, K., Meister, FMacromol Symploke 2010, 294, 75–89; https://doi.org/10.1002/masy.201000009.Suche in Google Scholar
38. Boysen, N., Philip, A., Rogalla, D., Karppinen, M., Devi, A. Chem. Eur J. 2022, 28, 1–12.10.1002/chem.202103798Suche in Google Scholar PubMed PubMed Central
39. Zhu, S., Liang, R., Jiang, H. Tetrahedron 2012, 68, 7949–7955; https://doi.org/10.1016/j.tet.2012.07.009.Suche in Google Scholar
40. Wang, Z., Sun, X., Xu, C., Ji, B. Front. Chem. 2019, 7, 1–10.10.3389/fchem.2019.00422Suche in Google Scholar PubMed PubMed Central
41. Funtan, S., Michael, P., Binder, W. H. Biomimetics 2019, 4, 24; https://doi.org/10.3390/biomimetics4010024.Suche in Google Scholar PubMed PubMed Central
42. Thanneeru, S., Ayers, K. M., Anuganti, M., Zhang, L., Kumar, V. C., Ung, G., He, J. J. Mater. Chem. C 2020, 8, 2280–2288; https://doi.org/10.1039/c9tc04776j.Suche in Google Scholar
43. Li, D., Ollevier, T. J. Organomet. Chem. 2020, 906, 121025; https://doi.org/10.1016/j.jorganchem.2019.121025.Suche in Google Scholar
44. Domyati, D., Hope, S. L., Latifi, R., Hearns, M. D. Tahsini L. Inorg. Chem. 2016, 55, 11685–11693; https://doi.org/10.1021/acs.inorgchem.6b01646.Suche in Google Scholar PubMed
45. Lauffer, R. B. Chem. Rev. 1987, 87, 901–927; https://doi.org/10.1021/cr00081a003.Suche in Google Scholar
46. Filippov, A., Antzutkin, O. N., Shah, F. U. Phys. Chem. Chem. Phys. 2019, 21, 22531–22538; https://doi.org/10.1039/c9cp04504j.Suche in Google Scholar PubMed
47. Choi, D. S., Kim, D. H., Shin, U. S., Deshmukh, R. R., Lee, S. G., Song, C. E. Chem. Commun. 2007, 2007, 3467–3469; https://doi.org/10.1039/b708044a.Suche in Google Scholar PubMed
48. Barreca, D., Fois, E., Gasparotto, A., Seraglia, R., Tondello, E., Tabacchi, G. Chem. Eur J. 2011, 17, 10864–10870; https://doi.org/10.1002/chem.201101551.Suche in Google Scholar PubMed
49. Martins, V. L., Sanchez-Ramírez, N., Calderon, J. A., Torresi, R. M. J. Mater. Chem. 2013, 1, 14177–14182; https://doi.org/10.1039/c3ta12992f.Suche in Google Scholar
50. Abu-Eishah, S. I., Elsuccary, S. A. A., Al-Attar, T. H., Khanji, A. A., Butt, H. P., Mohamed, N. M. Production of 1-Butyl-3-Methylimidazolium Acetate [Bmim][Ac] Using 1-Butyl-3-Methylimidazolium Chloride [Bmim]Cl and Silver Acetate: A Kinetic Study. In Ionic Liquids - Thermophysical Properties and Applications; Sohel Murshed, S. M., Ed.; IntechOpen: London, 2021; pp. 1–21.10.5772/intechopen.96569Suche in Google Scholar
51. Sheldrick, G. M. Sadabs, Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Suche in Google Scholar
52. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central
53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
54. Olex2 (version 1.2). OlexSys Ltd.: Durham (UK), 2014.Suche in Google Scholar
55. Sheldrick, G. M. Acta Crystallogr. Sect. C. Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar
56. Brandenburg, K. Diamond 4, Crystal and Molecular Structure Visualization (version 4.6.8); Crystal Impact GbR: Bonn (Germany), 2022.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0305).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies