Startseite N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid

  • Sameera Shah , Tobias Pietsch und Michael Ruck EMAIL logo
Veröffentlicht/Copyright: 8. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aerobic oxidation of copper(I) to copper(II) was studied in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium acetate [BMIm][OAc]. Temperatures above 100 °C promote the deprotonation of the C2 atom of the imidazolium ring and the dissolution of CuCl. 1H and 13C NMR spectra indicate the formation of the N-heterocyclic carbene (NHC) complex [NHC] CuICl under inert conditions. Upon aerobic oxidation, air-stable blue-green crystals of [BMIm]2[CuII 2(OAc)4Cl2] precipitate in high yield and the NHC is recovered. X-ray diffraction on a single-crystal of the complex salt revealed a monoclinic structure with space group P21/n. The centrosymmetric dinuclear acetate complex [Cu2(OAc)4Cl2]2– has the paddle-wheel motif and is weakly paramagnetic.


Corresponding author: Michael Ruck, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany; and Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany, E-mail: . https://tu-dresden.de/mn/chemie/ac/ac2/
Supporting information for this article is available online. See note at the end of the document for availability. Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.

Acknowledgments

The authors thank Dr. I. Kuhnert for performing the DSC and TG measurements, Dr. G. S. Thakur and F. Pabst for the measurement and discussion of data on the magnetism and M. A. Herz for help in crystal structure solution. We are grateful to Prof. Dr. S. Kaskel for access to the Biologic device to record the cyclic voltammogram and to Prof. Dr. E. Brunner for access to the NMR, Raman and UV–Vis spectrometers.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest: The authors declare no conflict of interest.

References

1. Wasserscheid, P., Ed. Ionic Liquids in Synthesis; Wiley VCH: Weinheim (Germany), 2002.10.1002/3527600701Suche in Google Scholar

2. Hammond, O. S., Mudring, A.-V. Chem. Commun. 2022, 58, 3865–3892; https://doi.org/10.1039/d1cc06543b.Suche in Google Scholar PubMed

3. Zhang, T., Doert, T., Wang, H., Zhang, S., Ruck, M. Angew. Chem. Int. Ed. 2021, 60, 22148–22165; https://doi.org/10.1002/anie.202104035.Suche in Google Scholar PubMed PubMed Central

4. Taubert, A. Inorganic Nanomaterials Synthesis Using Ionic Liquids. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R. A., Ed.; John Wiley & Sons: Hoboken, NJ, 2016; pp. 1–14.10.1002/9781119951438.eibc0355.pub2Suche in Google Scholar

5. Janiak, C. AIMS Mater. Sci. 2014, 1, 41–44.10.3934/matersci.2014.1.41Suche in Google Scholar

6. Nockemann, P., Thijs, B., Pittois, S., Thoen, J., Glorieux, C., Van Hecke, K., Van Meervelt, L., Kirchner, B., Binnemans, K. J. Phys. Chem. B 2006, 110, 20978–20992; https://doi.org/10.1021/jp0642995.Suche in Google Scholar PubMed

7. Dupont, D., Renders, E., Raiguel, S., Binnemans, K. Chem. Commun. 2016, 52, 7032–7035; https://doi.org/10.1039/c6cc02350a.Suche in Google Scholar PubMed

8. Richter, J., Ruck, M. Molecules 2020, 25, 78; https://doi.org/10.3390/molecules25010078.Suche in Google Scholar PubMed PubMed Central

9. Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., Nyulászi, L. New J. Chem. 2010, 34, 3004; https://doi.org/10.1039/c0nj00380h.Suche in Google Scholar

10. Rodríguez, H., Gurau, G., Holbrey, J. D., Rogers, R. D. Chem. Commun. 2011, 47, 3222; https://doi.org/10.1039/c0cc05223j.Suche in Google Scholar PubMed

11. Chiarotto, I., Feroci, M., Inesi, A. New J. Chem. 2017, 41, 7840–7843; https://doi.org/10.1039/c7nj00779e.Suche in Google Scholar

12. Braunstein, P., Danopoulos, A. A., Simler, T. Chem. Rev. 2019, 119, 3730–3961; https://doi.org/10.1021/acs.chemrev.8b00505.Suche in Google Scholar PubMed

13. Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S., Lin, I. J. B. Chem. Rev. 2009, 109, 3561–3598; https://doi.org/10.1021/cr8005153.Suche in Google Scholar PubMed

14. Meng, G., Kakalis, L., Nolan, S. P., Szostak, M. Tetrahedron Lett. 2019, 60, 378–381; https://doi.org/10.1016/j.tetlet.2018.12.059.Suche in Google Scholar

15. Gurau, G., Rodriguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., Rogers, R. D. Angew. Chem. Int. Ed. 2011, 50, 12024–12026; https://doi.org/10.1002/anie.201105198.Suche in Google Scholar PubMed

16. Xu, A., Guo, X., Xu, R. Int. J. Biol. Macromol. 2015, 81, 1000–1004; https://doi.org/10.1016/j.ijbiomac.2015.09.058.Suche in Google Scholar PubMed

17. Liebner, F., Patel, I., Ebner, G., Becker, E., Horix, M., Potthast, A., Rosenau, T. Holzforschung 2010, 64, 161–166.10.1515/hf.2010.033Suche in Google Scholar

18. Richter, J., Knies, M., Ruck, M. Chemistry 2021, 10, 97–109; https://doi.org/10.1002/open.202000231.Suche in Google Scholar PubMed PubMed Central

19. Richter, J., Ruck, M. RSC Adv. 2019, 9, 29699–29710; https://doi.org/10.1039/c9ra06423k.Suche in Google Scholar PubMed PubMed Central

20. Jenniefer, S. J., Muthiah, P. T. Chem. Cent. J. 2013, 7, 1.10.1186/1752-153X-7-35Suche in Google Scholar PubMed PubMed Central

21. Serov, N. Y., Shtyrlin, V. G., Islamov, D. R., Kataeva, O. N., Krivolapov, D. B. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 981–986; https://doi.org/10.1107/s2056989018008538.Suche in Google Scholar PubMed PubMed Central

22. Bette, S., Costes, A., Kremer, R. K., Eggert, G., Tang, C. C., Dinnebier, R. E. Z. Anorg. Allg. Chem. 2019, 645, 988–997; https://doi.org/10.1002/zaac.201900125.Suche in Google Scholar

23. Seguin, A. K., Wrighton-Araneda, K., Cortés-Arriagada, D., Cruz, C., Venegas-Yazigi, D., Paredes-García, V. J. Mol. Struct. 2021, 1224, 129172; https://doi.org/10.1016/j.molstruc.2020.129172.Suche in Google Scholar

24. Bleaney, B., Bowers, K. D. Proc. R. Soc. A 1952, 214, 451–465.10.1098/rspa.1952.0181Suche in Google Scholar

25. Lin, Z., Han, D., Li, S. J. Therm. Anal. Calorim. 2012, 107, 471–475; https://doi.org/10.1007/s10973-011-1454-4.Suche in Google Scholar

26. Efimova, A., Hubrig, G., Schmidt, P. Thermochim. Acta 2013, 573, 162–169; https://doi.org/10.1016/j.tca.2013.09.023.Suche in Google Scholar

27. Efimova, A., Varga, J., Matuschek, G., Saraji-Bozorgzad, M. R., Denner, T., Zimmermann, R., Schmidt, P. J. Phys. Chem. B 2018, 122, 8738–8749; https://doi.org/10.1021/acs.jpcb.8b06416.Suche in Google Scholar PubMed

28. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R., Kozlowski, M. C. Chem. Rev. 2013, 113, 6234–6458; https://doi.org/10.1021/cr300527g.Suche in Google Scholar PubMed PubMed Central

29. Elie, M., Sguerra, F., Di Meo, F., Weber, M. D., Marion, R ., Grimault, A., Lohier, J. F., Stallivieri, A., Brosseau, A., Pansu, R. B., Renaud, J. L., Linares, M., Hamel, M., Costa, R. D., Gaillard, S. ACS Appl. Mater. Interfaces 2016, 8, 14678–14691 https://doi.org/10.1021/acsami.6b04647.Suche in Google Scholar PubMed

30. Vogler, A. Inorg. Chem. Commun. 2017, 84, 81–83; https://doi.org/10.1016/j.inoche.2017.06.031.Suche in Google Scholar

31. Hamann, J. N., Tuczek, F. Chem. Commun. 2014, 50, 2298–2300; https://doi.org/10.1039/c3cc47888b.Suche in Google Scholar PubMed

32. Cabaço, M. I., Besnard, M., Danten, Y., Coutinho, J. A. P. J. Phys. Chem. A 2012, 116, 1605–1620; https://doi.org/10.1021/jp211211n.Suche in Google Scholar PubMed

33. Marekha, B. A., Bria, M., Moreau, M., De Waele, I., Miannay, F. A., Smortsova, Y., Takamuku, T., Kalugin, O. N., Kiselev, M., Idrissi, A. J. Mol. Liq. 2015, 210, 227–237; https://doi.org/10.1016/j.molliq.2015.05.015.Suche in Google Scholar

34. Hollóczki, O., Firaha, D. S., Friedrich, J., Brehm, M., Cybik, R., Wild, M., Stark, A., Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907; https://doi.org/10.1021/jp4004399.Suche in Google Scholar PubMed

35. Vellé, A., Cebollada, A., Macías, R., Iglesias, M., Gil-Moles, M., Sanz Miguel, P. J. ACS Omega 2017, 2, 1392–1399; https://doi.org/10.1021/acsomega.7b00138.Suche in Google Scholar PubMed PubMed Central

36. Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., Mascetti, J., Danten, Y. J. Phys. Chem. A 2012, 116, 4890–4901; https://doi.org/10.1021/jp211689z.Suche in Google Scholar PubMed

37. Hesse-Ertelt, S., Heinze, T., Kosan, B., Schwikal, K., Meister, FMacromol Symploke 2010, 294, 75–89; https://doi.org/10.1002/masy.201000009.Suche in Google Scholar

38. Boysen, N., Philip, A., Rogalla, D., Karppinen, M., Devi, A. Chem. Eur J. 2022, 28, 1–12.10.1002/chem.202103798Suche in Google Scholar PubMed PubMed Central

39. Zhu, S., Liang, R., Jiang, H. Tetrahedron 2012, 68, 7949–7955; https://doi.org/10.1016/j.tet.2012.07.009.Suche in Google Scholar

40. Wang, Z., Sun, X., Xu, C., Ji, B. Front. Chem. 2019, 7, 1–10.10.3389/fchem.2019.00422Suche in Google Scholar PubMed PubMed Central

41. Funtan, S., Michael, P., Binder, W. H. Biomimetics 2019, 4, 24; https://doi.org/10.3390/biomimetics4010024.Suche in Google Scholar PubMed PubMed Central

42. Thanneeru, S., Ayers, K. M., Anuganti, M., Zhang, L., Kumar, V. C., Ung, G., He, J. J. Mater. Chem. C 2020, 8, 2280–2288; https://doi.org/10.1039/c9tc04776j.Suche in Google Scholar

43. Li, D., Ollevier, T. J. Organomet. Chem. 2020, 906, 121025; https://doi.org/10.1016/j.jorganchem.2019.121025.Suche in Google Scholar

44. Domyati, D., Hope, S. L., Latifi, R., Hearns, M. D. Tahsini L. Inorg. Chem. 2016, 55, 11685–11693; https://doi.org/10.1021/acs.inorgchem.6b01646.Suche in Google Scholar PubMed

45. Lauffer, R. B. Chem. Rev. 1987, 87, 901–927; https://doi.org/10.1021/cr00081a003.Suche in Google Scholar

46. Filippov, A., Antzutkin, O. N., Shah, F. U. Phys. Chem. Chem. Phys. 2019, 21, 22531–22538; https://doi.org/10.1039/c9cp04504j.Suche in Google Scholar PubMed

47. Choi, D. S., Kim, D. H., Shin, U. S., Deshmukh, R. R., Lee, S. G., Song, C. E. Chem. Commun. 2007, 2007, 3467–3469; https://doi.org/10.1039/b708044a.Suche in Google Scholar PubMed

48. Barreca, D., Fois, E., Gasparotto, A., Seraglia, R., Tondello, E., Tabacchi, G. Chem. Eur J. 2011, 17, 10864–10870; https://doi.org/10.1002/chem.201101551.Suche in Google Scholar PubMed

49. Martins, V. L., Sanchez-Ramírez, N., Calderon, J. A., Torresi, R. M. J. Mater. Chem. 2013, 1, 14177–14182; https://doi.org/10.1039/c3ta12992f.Suche in Google Scholar

50. Abu-Eishah, S. I., Elsuccary, S. A. A., Al-Attar, T. H., Khanji, A. A., Butt, H. P., Mohamed, N. M. Production of 1-Butyl-3-Methylimidazolium Acetate [Bmim][Ac] Using 1-Butyl-3-Methylimidazolium Chloride [Bmim]Cl and Silver Acetate: A Kinetic Study. In Ionic Liquids - Thermophysical Properties and Applications; Sohel Murshed, S. M., Ed.; IntechOpen: London, 2021; pp. 1–21.10.5772/intechopen.96569Suche in Google Scholar

51. Sheldrick, G. M. Sadabs, Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Suche in Google Scholar

52. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

54. Olex2 (version 1.2). OlexSys Ltd.: Durham (UK), 2014.Suche in Google Scholar

55. Sheldrick, G. M. Acta Crystallogr. Sect. C. Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

56. Brandenburg, K. Diamond 4, Crystal and Molecular Structure Visualization (version 4.6.8); Crystal Impact GbR: Bonn (Germany), 2022.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0305).


Received: 2022-12-21
Accepted: 2023-01-11
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0305/html
Button zum nach oben scrollen