Home Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Article
Licensed
Unlicensed Requires Authentication

Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies

  • Suhad Omar , Elisabeth Irran , Dennis Wiedemann , Dirk Baabe and Andreas Grohmann EMAIL logo
Published/Copyright: March 17, 2023
Become an author with De Gruyter Brill

Abstract

4-(2,6-Di(2H-indazol-2-yl)pyridin-4-yl)benzoic acid (1) and 10-(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)anthracene-9-carboxylic acid (2) were required for adsorption studies on Ag(111), with a view to subsequent iron(II) complexation and formation of well-ordered spin-responsive self-assembled monolayers. While the generation of these compounds has remained elusive, several intermediates and by-products were obtained, potentially useful as dipyrazolylpyridine-related derivatives and for metal ion coordination. 3,5-Dichloro-2,6-diindazolylpyridine-4-amine, which forms as a mixture of regioisomers, was synthesised, the mixture separated, and the components characterised (3,5-dichloro-2,6-di(2H-indazol-2-yl)pyridin-4-amine; 3,5-dichloro-2-(1H-indazol-1-yl)-6-(2H-indazol-2-yl)pyridin-4-amine; 3,5-dichloro-2,6-di(1H-indazol-1-yl)pyridin-4-amine). Their iron(II) complexes have been prepared and fully characterised, including single crystal X-ray structure determination. The complexes are instructive examples of the influence of ligand design (“steric jamming”) on the spin-crossover (SCO) activity of FeII centres. Bulky substitution, which entails twisted ligand conformation, increases intramolecular crowding. This prevents contraction of the metal coordination sphere, which would be a prerequisite for thermally inducible SCO. Mössbauer spectroscopy has revealed that the complexes remain predominantly high-spin (HS) between 20 and 200 K, and that a mixture of conformational HS isomers is present in the microcrystalline solid.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Andreas Grohmann, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, E-mail:
Elisabeth Irran and Dennis Wiedemann, Single-crystal X-ray structure analysis. Dirk Baabe, Mössbauer spectroscopy and magnetic susceptibility measurements.

Acknowledgements

We thank Dr. G. Hörner for assistance with spin equilibrium evaluation. S. O. gratefully acknowledges a PhD scholarship from the German Academic Exchange Service (DAAD), under the programme “Forschungsstipendien – Promotionen in Deutschland”. We thank Prof. Dr. M. Bröring and Prof. Dr. F. J. Litterst (TU Braunschweig) for providing access to the SQUID magnetometer and Mössbauer spectrometer.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Feynman, R. There’s plenty of room at the bottom. Am. Phys. Soc. Ann. Meeting, California Institute of Technology, 1959. A transcript is available at https://www.zyvex.com/nanotech/feynman.html.Search in Google Scholar

2. Sailor, M. J. The advantage of being small: nanotechnology. In Letters to a Young Chemist; Ghosh, A., Ed. Wiley: Hoboken, 2011.10.1002/9781118007099.ch14Search in Google Scholar

3. Metzger, R. M. Unimolecular electronics. Chem. Rev. 2015, 115, 5056–5115. https://doi.org/10.1021/cr500459d.Search in Google Scholar PubMed

4. Yan, D. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality. Chem. Eur J. 2015, 21, 4880–4896. https://doi.org/10.1002/chem.201405456.Search in Google Scholar PubMed

5. Petty, M. C., Bryce, M. R., Bloor, D. Introduction to Molecular Electronics; Oxford University Press: New York, 1995.Search in Google Scholar

6. Guo, X. Molecular electronics: challenges and opportunities. AIMS Mater. Sci. 2014, 1, 11–14. https://doi.org/10.3934/matersci.2014.1.11.Search in Google Scholar

7. Meng, Y.-S., Liu, T. Manipulating spin transition to achieve switchable multifunctions. Acc. Chem. Res. 2019, 52, 1369–1379. https://doi.org/10.1021/acs.accounts.9b00049.Search in Google Scholar PubMed

8. Musumeci, C., Zappalà, G., Martsinovich, N., Orgiu, E., Schuster, S., Quici, S., Zharnikov, M., Troisi, A., Licciardello, A., Samorì, P. Nanoscale electrical investigation of layer-by-layer grown molecular wires. Adv. Mater. 2014, 26, 1688–1693. https://doi.org/10.1002/adma.201304848.Search in Google Scholar PubMed

9. Kurokawa, D., Gueriba, J. S., Dino, W. A. Spin-dependent O2 binding to hemoglobin. ACS Omega 2018, 3, 9241–9245. https://doi.org/10.1021/acsomega.8b00879.Search in Google Scholar PubMed PubMed Central

10. Halcrow, M. A., Ed. Spin-Crossover Materials – Properties and Applications; Wiley: Chichester, 2013.10.1002/9781118519301Search in Google Scholar

11. Alam, M. S., Stocker, M., Gieb, K., Müller, P., Haryono, M., Student, K., Grohmann, A. Spin-state patterns in surface-grafted beads of iron(II) complexes. Angew. Chem. Int. Ed. 2010, 49, 1159–1163. https://doi.org/10.1002/anie.200905062.Search in Google Scholar PubMed

12. Pukenas, L., Benn, F., Lovell, E., Santoro, A., Kershaw Cook, L. J., Halcrow, M. A., Evans, S. D. Bead-like structures and self-assembled monolayers from 2,6-dipyrazolylpyridines and their iron(II) complexes. J. Mater. Chem. C 2015, 3, 7890–7896. https://doi.org/10.1039/C5TC01233C.Search in Google Scholar

13. Bernien, M., Wiedemann, D., Hermanns, C. F., Krüger, A., Rolf, D., Kroener, W., Müller, P., Grohmann, A., Kuch, W. Spin crossover in a vacuum-deposited submonolayer of a molecular iron(II) complex. J. Phys. Chem. Lett. 2012, 3, 3431–3434. https://doi.org/10.1021/jz3011805.Search in Google Scholar PubMed

14. Krull, C., Castelli, M., Hapala, P., Kumar, D., Tadich, A., Capsoni, M., Edmonds, M. T., Hellerstedt, J., Burke, S. A., Jelinek, P., Schiffrin, A. Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation. Nat. Commun. 2018, 9, 3211 (7 pp). https://doi.org/10.1038/s41467-018-05543-4.Search in Google Scholar PubMed PubMed Central

15. Halcrow, M. A. Manipulating metal spin states for biomimetic, catalytic and molecular materials chemistry. Dalton Trans. 2020, 49, 15560–15567. https://doi.org/10.1039/D0DT01919D.Search in Google Scholar

16. Aitchison, H., Ortiz de la Morena, R., Peifer, R., Omar, S., Lu, H., Francis, S. M., Zharnikov, M., Grohmann, A., Buck, M. Self-assembly of di(pyrazol-1-yl)pyridine-benzoic acid on underpotentially deposited Ag from solution. Langmuir 2018, 34, 9654–9664. https://doi.org/10.1021/acs.langmuir.8b01734.Search in Google Scholar PubMed

17. Aitchison, H., Lu, H., Ortiz de la Morena, R., Cebula, I., Zharnikov, M., Buck, M. Self-assembly of 1,3,5-benzenetribenzoic acid on Ag and Cu at the liquid/solid interface. Phys. Chem. Chem. Phys. 2018, 20, 2731–2740. https://doi.org/10.1039/C7CP06160A.Search in Google Scholar PubMed

18. Armarego, W. L. F., Perrin, D. D. Purification of Laboratory Chemicals; Butterworth-Heinemann: Boston, 1996.Search in Google Scholar

19. Spivey, A. C., Arseniyadis, S. Nucleophilic catalysis by 4-(Dialkylamino)Pyridines revisited—the search for optimal reactivity and selectivity. Angew. Chem. Int. Ed. 2004, 43, 5436–5441. https://doi.org/10.1002/anie.200460373.Search in Google Scholar PubMed

20. Rajadurai, C., Schramm, F., Brink, S., Fuhr, O., Ghafari, M., Kruk, R., Ruben, M. Spin transition in a chainlike supramolecular iron(II) complex. Inorg. Chem. 2006, 45, 10019–10021. https://doi.org/10.1021/ic0612350.Search in Google Scholar PubMed

21. Rajadurai, C., Ruben, M. Preparation of 2’,6’-Di-pyrazolylpyridine containing a reactive group in the 4’ position. EP 2 053 049 A1. 2009.Search in Google Scholar

22. Neumann, H., Brennführer, A., Groß, P., Riermeier, T., Almena, J., Beller, M. Efficient carbonylation of aryl and heteroaryl bromides using a palladium/diadamantylbutylphosphine catalyst. Adv. Synth. Catal. 2006, 348, 1255–1261. https://doi.org/10.1002/adsc.200606044.Search in Google Scholar

23. Zhu, L., Al-Kaysi, R. O., Dillon, R. J., Tham, F. S., Bardeen, C. J. Crystal structures and photophysical properties of 9-anthracene carboxylic acid derivatives for photomechanical applications. Cryst. Growth Des. 2011, 11, 4975–4983. https://doi.org/10.1021/cg200883b.Search in Google Scholar

24. Georgin, D., Czarny, B., Botquin, M., Mayne-L’Hermite, M., Pinault, M., Bouchet-Fabre, B., Carriere, M., Poncy, J.-L., Chau, Q., Maximilien, R., Dive, V., Taran, F. Preparation of 14C-labeled multiwalled carbon nanotubes for biodistribution investigations. J. Am. Chem. Soc. 2009, 131, 14658–14659. https://doi.org/10.1021/ja906319z.Search in Google Scholar PubMed

25. Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., Goldberg, K. I. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176–2179. https://doi.org/10.1021/om100106e.Search in Google Scholar

26. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley-VCH: Weinheim, 2001.Search in Google Scholar

27. Brand, R. A. WinNormos-for-Igor, Version 3.0, 2009.Search in Google Scholar

28. Bain, G. A., Berry, J. F. Diamagnetic corrections and pascal’s constants. J. Chem. Educ. 2008, 85, 532. https://doi.org/10.1021/ed085p532.Search in Google Scholar

29. Agilent Diffraction. CrysAlisPro Software System 1.171.40.53 – Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Agilent Technologies: Oxford (UK), 2019.Search in Google Scholar

30. Clark, R. C., Reid, J. S. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr. A 1995, 51, 887–897. https://doi.org/10.1107/s0108767395007367.Search in Google Scholar

31. Sheldrick, G.M. Shelxs-97 and Shelxl-97, Program for Crystal Structure Solution and Refinement; University of Göttingen: Göttingen, 1997.Search in Google Scholar

32. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

33. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C 2015, 71, 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

34. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

35. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. https://doi.org/10.1107/S1600576719014092.Search in Google Scholar PubMed PubMed Central

36. Kratzert, D., Holstein, J. J., Krossing, I. D. S. R. Enhanced modelling and refinement of disordered structures with Shelxl. J. Appl. Crystallogr. 2015, 48, 933–938. https://doi.org/10.1107/S1600576715005580.Search in Google Scholar PubMed PubMed Central

37. Omar, S., Grohmann, A., Buck, M. to be published.Search in Google Scholar

38. Santoro, A., Kershaw Cook, L. J., Kulmaczewski, R., Barrett, S. A., Cespedes, O., Halcrow, M. A. Iron(II) complexes of tridentate indazolylpyridine ligands: enhanced spin-crossover hysteresis and ligand-based fluorescence. Inorg. Chem. 2015, 54, 682–693. https://doi.org/10.1021/ic502726q.Search in Google Scholar PubMed

39. Duncan, N. C., Garner, C. M. Regiospecific synthesis of 2,6-Bis-indazol-1-ylpyridines from 2,6-Bis-hydrazinopyridine. Tetrahedron Lett. 2011, 52, 5214–5216. https://doi.org/10.1016/j.tetlet.2011.07.081.Search in Google Scholar

40. Pritchard, R., Kilner, C. A., Halcrow, M. A. Unexpected product distributions in the synthesis of 2,6-Bis-(indazolyl)pyridine and 2-(Pyrazol-1-yl)-6-(indazolyl)pyridine. Tetrahedron Lett. 2009, 50, 2484–2486. https://doi.org/10.1016/j.tetlet.2009.03.035.Search in Google Scholar

41. Menichincheri, M., Fusar Bassini, D., Gude, M., Angiolini, M. Parallel synthesis of 4-Amino-2,6-dialkylamino-pyridines. Tetrahedron Lett. 2003, 44, 519–522. https://doi.org/10.1016/S0040-4039(02)02585-6.Search in Google Scholar

42. Kumar, M. R., Park, A., Park, N., Lee, S. Consecutive condensation, C–N and N–N bond formations: a copper-catalyzed one-pot three-component synthesis of 2H-indazole. Org. Lett. 2011, 13, 3542–3545. https://doi.org/10.1021/ol201409j.Search in Google Scholar PubMed

43. Calò, V., Giannoccaro, P., Nacci, A., Monopoli, A. Pd–Benzothiazole carbene catalysed carbonylation of aryl halides in ionic liquids. J. Organomet. Chem. 2002, 645, 152–157. https://doi.org/10.1016/S0022-328X(01)01401-2.Search in Google Scholar

44. Newsome, D. S. The water-gas shift reaction. Catal. Rev. 1980, 21, 275–318. https://doi.org/10.1080/03602458008067535.Search in Google Scholar

45. Modak, A., Maiti, D. Metal catalyzed defunctionalization reactions. Org. Biomol. Chem. 2016, 14, 21–35. https://doi.org/10.1039/C5OB01949D.Search in Google Scholar PubMed

46. Wen, Q., Jin, J., Hu, B., Lu, P., Wang, Y. Palladium-catalyzed cyanide metathesis: utilization of benzyl cyanide as an operator-benign reagent for aryl halide cyanations. RSC Adv. 2012, 2, 6167–6169. https://doi.org/10.1039/C2RA20770B.Search in Google Scholar

47. Schmittel, M., He, B., Mal, P. Supramolecular multicomponent self-assembly of shape-adaptive nanoprisms: wrapping up C60 with three porphyrin units. Org. Lett. 2008, 10, 2513–2516. https://doi.org/10.1021/ol800796h.Search in Google Scholar PubMed

48. Zheng, R., Zhou, Q., Gu, H., Jiang, H., Wu, J., Jin, Z., Han, D., Dai, G., Chen, R. Copper-catalyzed synthesis of aromatic carboxylic acids from arylboronic acids and acetyl acetate. Tetrahedron Lett. 2014, 55, 5671–5675. https://doi.org/10.1016/j.tetlet.2014.08.090.Search in Google Scholar

49. Gütlich, P., Goodwin, H. A. Spin Crossover in Transition Metal Compounds I; Springer: Berlin Heidelberg, 2004.10.1007/b96439Search in Google Scholar

50. Pritchard, R., Kilner, C. A., Halcrow, M. A. Iron(II) complexes with a terpyridine embrace packing motif show remarkably consistent cooperative spin-transitions. Chem. Commun. 2007, 6, 577–579; https://doi.org/10.1039/B613402E.Search in Google Scholar

51. Rajadurai, C., Fuhr, O., Kruk, R., Ghafari, M., Hahn, H., Ruben, M. Above-room-temperature spin transition in a metallo-supramolecular coordination oligomer/polymer. Chem. Commun. 2007, 25, 2636–2638; https://doi.org/10.1039/B702468A.Search in Google Scholar

52. Šalitroš, I., Madhu, N. T., Boča, R., Pavlik, J., Ruben, M. Room-temperature spin-transition iron compounds. Monatsh. Chem. – Chem. Mon. 2009, 140, 695–733. https://doi.org/10.1007/s00706-009-0128-4.Search in Google Scholar

53. González-Prieto, R., Fleury, B., Schramm, F., Zoppellaro, G., Chandrasekar, R., Fuhr, O., Lebedkin, S., Kappes, M., Ruben, M. Tuning the spin-transition properties of pyrene-decorated 2,6-bispyrazolylpyridine based Fe(II) complexes. Dalton Trans. 2011, 40, 7564–7570. https://doi.org/10.1039/C1DT10420A.Search in Google Scholar

54. Boča, R. Zero-field splitting in metal complexes. Coord. Chem. Rev. 2004, 248, 757–815. https://doi.org/10.1016/j.ccr.2004.03.001.Search in Google Scholar

55. Halcrow, M. A. The effect of ligand design on metal ion spin state—lessons from spin crossover complexes. Crystals 2016, 6, 58 (20 pp). https://doi.org/10.3390/cryst6050058.Search in Google Scholar

56. Gütlich, P., Schröder, C., Schünemann, V. Mössbauer spectroscopy – an indispensable tool in solid state research. Spectrosc. Eur. 2012, 24, 21–32.Search in Google Scholar

57. Hanazaki, I., Nagakura, S. Electronic structure of the tris(α, α’-dipyridyl)Iron(II) ion. Inorg. Chem. 1969, 8, 648–654. https://doi.org/10.1021/ic50073a047.Search in Google Scholar

58. Bousseksou, A., Molnár, G., Matouzenko, G. Switching of molecular spin states in inorganic complexes by temperature, pressure, magnetic field and light: towards molecular devices. Eur. J. Inorg. Chem. 2004, 22, 4353–4369; https://doi.org/10.1002/ejic.200400571.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0311).


Received: 2023-02-23
Accepted: 2023-03-01
Published Online: 2023-03-17
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0311/html
Scroll to top button