Home Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
Article
Licensed
Unlicensed Requires Authentication

Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)

  • Timo Glodde , Beate Neumann , Hans-Georg Stammler and Norbert W. Mitzel EMAIL logo
Published/Copyright: March 15, 2023
Become an author with De Gruyter Brill

Abstract

In a systematic study the Se(IV) and Te(IV) dihalides F2E(CH3)(C6F5), Cl2E(CH3)(C6F5) and Br2E(CH3)(C6F5) (E = Se, Te) have been synthesized and their crystal and molecular structures been investigated by X-ray diffraction and computational methods. The solid-state structures of all compounds show significant correlations between the lengths of the E–C1 bond and the intermolecular E···X (X = F, Cl and Br) contacts, indicating the presence of σ-hole interactions. For comparison, the crystal and gas phase (electron diffraction) structures of Se(CH3)(C6F5) are presented as well. They show very similar structural parameters in both phases. The structures of the single molecules X2E(CH3)(C6F5) have been analyzed by quantum-chemical methods in terms of their surface potentials. They show significant similarities of their molecular electrostatic-potential topologies (V s,max). The magnitude of V s,max correlates with the aggregation pattern.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Norbert W. Mitzel, Chair of Inorganic and Structural Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany, E-mail:

Acknowledgments

DFG (German Research Foundation) in the Priority Program SPP1807 “Control of London dispersion in molecular chemistry”, (grant MI477/28–2, project no. 271386299) and the core facility GED@BI (grant MI477/35–1, project no. 324757882). The authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Centre for Parallel computing (PC2). We thank Salman Shaheen for assistance during preparative work.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wagner, J. P., Schreiner, P. R. Angew. Chem. Int. Ed. 2015, 54, 12274; https://doi.org/10.1002/anie.201503476.Search in Google Scholar PubMed

2. Hassel, O., Strømme, K. O. Nature 1958, 182, 1155; https://doi.org/10.1038/1821155a0.Search in Google Scholar

3. Bent, H. A. Chem. Rev. 1968, 68, 587; https://doi.org/10.1021/cr60255a003.Search in Google Scholar

4. Hassel, O. Science 1970, 170, 497; https://doi.org/10.1126/science.170.3957.497.Search in Google Scholar PubMed

5. Politzer, P., Lane, P., Concha, M. C., Ma, Y., Murray, J. S. J. Mol. Model. 2007, 13, 305; https://doi.org/10.1007/s00894-006-0154-7.Search in Google Scholar PubMed

6a). Politzer, P., Murray, J. S. Crystals 2017, 7, 212; https://doi.org/10.3390/cryst7070212.Search in Google Scholar

b) Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. Chem. Rev. 2016, 116, 2478; https://doi.org/10.1021/acs.chemrev.5b00484. Search in Google Scholar PubMed PubMed Central

c) Brinck, T., Murray, J. S., Politzer, P. Int. J. Quantum Chem. 1992, 44, 57; https://doi.org/10.1002/qua.560440709. Search in Google Scholar

d) Legon, A. C. Phys. Chem. Chem. Phys. 2010, 12, 7736; https://doi.org/10.1039/c002129f.Search in Google Scholar PubMed

7a). Metrangolo, P., Murray, J. S., Pilati, T., Politzer, P., Resnati, G., Terraneo, G. Cryst. Growth Des. 2011, 11, 4238; https://doi.org/10.1021/cg200888n.Search in Google Scholar

Shields, Z. P., Murray, J. S., Politzer, P. Int. J. Quantum Chem. 2010, 110, 2823; https://doi.org/10.1002/qua.22787.Search in Google Scholar

8a). Stammler, H. G., Vishnevskiy, Y. V., Sicking, C., Mitzel, N. W. CrystEngComm 2013, 15, 3536; https://doi.org/10.1039/c3ce40332g. Search in Google Scholar

Nayak, S. K., Kumar, V., Murray, J. S., Politzer, P., Terraneo, G., Pilati, T., Metrangolo, P., Resnati, G. CrystEngComm 2017, 19, 4955; https://doi.org/10.1039/c7ce01070b.Search in Google Scholar

9a). Benz, S., Poblador-Bahamonde, A. I., Low-Ders, N., Matile, S. Angew. Chem. Int. Ed. Engl. 2018, 57, 5408; https://doi.org/10.1002/anie.201801452. Search in Google Scholar

Zhou, B., Gabbaï, F. P. Chem. Sci. 2020, 11, 7495; https://doi.org/10.1039/d0sc02872j.Search in Google Scholar

10a). Legon, A. C. Chem. Eur J. 1998, 4, 1890; https://doi.org/10.1002/(sici)1521-3765(19981002)4:10<1890::aid-chem1890>3.0.co;2-4. 10.1002/(SICI)1521-3765(19981002)4:10<1890::AID-CHEM1890>3.0.CO;2-4Search in Google Scholar

b) Legon, A. C. Angew. Chem. Int. Ed. 1999, 38, 2686; https://doi.org/10.1002/(sici)1521-3773(19990917)38:18<2686::aid-anie2686>3.0.co;2-6.10.1002/(SICI)1521-3773(19990917)38:18<2686::AID-ANIE2686>3.0.CO;2-6Search in Google Scholar

11a). Murray, J. S., Lane, P., Clark, T., Politzer, P. J. Mol. Model. 2007, 13, 1033; https://doi.org/10.1007/s00894-007-0225-4. Search in Google Scholar

Schwabedissen, J., Trapp, P. C., Stammler, H. G., Neumann, B., Lamm, J. H., Vishnevskiy, Y. V., Körte, L. A., Mitzel, N. W. Chem. Eur J. 2019, 25, 7339; https://doi.org/10.1002/chem.201900334. Search in Google Scholar

c) Linnemannstöns, M., Schwabedissen, J., Schultz, A. A., Neumann, B., Stammler, H. G., Berger, R. J. F., Mitzel, N. W. Chem. Commun. 2020, 56, 2252; https://doi.org/10.1039/c9cc09851h. Search in Google Scholar

d) Linnemannstöns, M., Schwabedissen, J., Neumann, B., Stammler, H. G., Berger, R. J. F., Mitzel, N. W. Chem. Eur J. 2020, 26, 2169; https://doi.org/10.1002/chem.201905727. Search in Google Scholar

e) Fokin, A. A., Zhuk, T. S., Blomeyer, S., Perez, C., Chernish, L. V., Pashenko, A. E., Antony, J., Vishnevskiy, Y. V., Berger, R. J. F., Grimme, S., Logemann, C., Schnell, M., Mitzel, N. W., Schreiner, P. R. J. Am. Chem. Soc. 2017, 139, 16696; https://doi.org/10.1021/jacs.7b07884. Search in Google Scholar PubMed

f) Vishnevskiy, Y. V., Tikhonov, D. S., Schwabedissen, J., Stammler, H.-G., Moll, R., Krumm, B., Klapoetke, T. M., Mitzel, N. W. Angew. Chem. Int. Ed. 2017, 56, 9619; https://doi.org/10.1002/anie.201704396. Search in Google Scholar PubMed

g) Holub, J., Vishnevskiy, Y. V., Fanfrlík, J., Mitzel, N. W., Tikhonov, D., Schwabedissen, J., McKee, M. L., Hnyk, D. ChemPlusChem 2020, 85, 2606; https://doi.org/10.1002/cplu.202000543. Search in Google Scholar PubMed

h) Schwabedissen, J., Glodde, T., Vishnevskiy, Y. V., Stammler, H. G., Flierl, L., Kornath, A. J., Mitzel, N. W. Chem. Open 2020, 9, 921; https://doi.org/10.1002/open.202000172. Search in Google Scholar PubMed PubMed Central

i) Reichel, M. K. B., Vishnevskiy, Y. V., Blomeyer, S., Schwabedissen, J., Stammler, H. G., Karaghiosoff, K., Mitzel, N. W. Angew. Chem. Int. Ed. 2019, 58, 18557; https://doi.org/10.1002/anie.201911300. Search in Google Scholar PubMed PubMed Central

j) Baše, T., Holub, J., Fanfrlík, J., Hnyk, D., Lane, P. D., Wann, D. A., Vishnevskiy, Y. V., Tikhonov, D., Reuter, C. G., Mitzel, N. W. Chem. Eur J. 2019, 25, 2313; https://doi.org/10.1002/chem.201805145.Search in Google Scholar PubMed

12a). Bondi, A. J. Phys. Chem. 1964, 68, 441; https://doi.org/10.1021/j100785a001. Search in Google Scholar

b) Shannon, R. D. Acta Crystallogr. A 1976, 32, 751; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

13. Alvarez, S. Dalton Trans. 2013, 42, 8617; https://doi.org/10.1039/c3dt50599e.Search in Google Scholar PubMed

14. de Santis, A., Forni, A., Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G. Chem. Eur J. 2003, 9, 3974; https://doi.org/10.1002/chem.200204655.Search in Google Scholar PubMed

15. Scilabra, P., Kumar, V., Ursini, M., Resnati, G. J. Mol. Model. 2018, 24, 37; https://doi.org/10.1007/s00894-017-3573-8.Search in Google Scholar PubMed PubMed Central

16. Scilabra, P., Terraneo, G., Resnati, G. J. Fluorine Chem. 2017, 203, 62; https://doi.org/10.1016/j.jfluchem.2017.10.002.Search in Google Scholar

17. Ho, P. C., Szydlowski, P., Sinclair, J., Elder, P. J. W., Kübel, J., Gendy, C., Lee, L. M., Jenkins, H., Britten, J. F., Morim, D. R., Vargas-Baca, I. Nat. Commun. 2016, 7, 11299; https://doi.org/10.1038/ncomms11299.Search in Google Scholar PubMed PubMed Central

18. Beno, B. R., Yeung, K.-S., Bartberger, M. D., Pennington, L. D., Meanwell, N. A. J. Med. Chem. 2015, 58, 4383; https://doi.org/10.1021/jm501853m.Search in Google Scholar PubMed

19. Manna, D., Mugesh, G. J. Am. Chem. Soc. 2012, 134, 4269; https://doi.org/10.1021/ja210478k.Search in Google Scholar PubMed

20a). Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Pombeiro, A. J. L. Dalton Trans. 2017, 46, 10121; 10.1039/C7DT01685ASearch in Google Scholar

b) Clark, T., Hennemann, M., Murray, J. S., Politzer, P. J. Mol. Model. 2007, 13, 291; 10.1007/s00894-006-0130-2Search in Google Scholar

c) Haberhauer, G., Gleiter, R. Angew. Chem. Int. Ed. Engl. 2020, 59, 1773910.1002/anie.202006245Search in Google Scholar

d) Garrett, G. E., Carrera, E. I., Seferos, D. S., Taylor, M. S. Chem. Commun. 2016, 52, 9881; https://doi.org/10.1039/c6cc04818h.Search in Google Scholar PubMed

21. Born, P., Kniep, R., Mootz, D. Z. Anorg. Allg. Chem. 1979, 451, 12; https://doi.org/10.1002/zaac.19794510103.Search in Google Scholar

22a). Couch, D. A., Elmes, P. S., Fergusson, J. E., Greenfield, M. L., Wilkins, C. J. J. Chem. Soc., A 1967, 1813; https://doi.org/10.1039/j19670001813. Search in Google Scholar

b) Lentz, D., Szwak, M. Angew. Chem. Int. Ed. 2005, 44, 5079; https://doi.org/10.1002/anie.200500168. Search in Google Scholar PubMed

c) Shlykov, S. A., Giricheva, N. I., Titov, A. V., Szwak, M., Lentz, D., Girichev, G. V. Dalton Trans. 2010, 39, 3245; https://doi.org/10.1039/b922474b. Search in Google Scholar PubMed

d) Shlykov, S. A., Titov, A. V., Oberhammer, H., Giricheva, N. I., Girichev, G. V. Phys. Chem. Chem. Phys. 2008, 10, 6438; https://doi.org/10.1039/b808071b. Search in Google Scholar PubMed

e) Katsaros, N., George, J. W. Inorg. Chim. Acta 1969, 3, 165; https://doi.org/10.1016/s0020-1693(00)92470-8.Search in Google Scholar

23. Smith, C. S., Lee, J. S., Titus, D. D., Ziolo, R. F. Organometallics 1982, 1, 350; https://doi.org/10.1021/om00062a021.Search in Google Scholar

24. Bienfait, A. M., Kubella, P., Müller, B., Seppelt, K. Heteroatom Chem. 2011, 22, 576; https://doi.org/10.1002/hc.20686.Search in Google Scholar

25. Preut, H., Wilkes, B., Naumann, D. Acta Crystallogr. C 1990, 46, 1113; https://doi.org/10.1107/s0108270190000518.Search in Google Scholar

26a). Aramini, J., Batchelor, R. J., Jones, C. H. W., Einstein, F. W. B., Sharma, R. D. Can. J. Chem. 1987, 65, 2643; https://doi.org/10.1139/v87-437. Search in Google Scholar

Herberg, S., Lange, H., Naumann, D. J. Fluorine Chem. 1987, 35, 267; https://doi.org/10.1016/s0022-1139(00)85010-1. Search in Google Scholar

Blake, A. J., Pulham, C. R., Greene, T. M., Downs, A. J., Haaland, A., Verne, H. P., Volden, H. V., Marsden, C. J., Smart, B. A. J. Am. Chem. Soc. 1994, 116, 6043; https://doi.org/10.1021/ja00092a095. Search in Google Scholar

d) Naumann, D., Klein, G. Z. Anorg. Allg. Chem. 1987, 550, 162; https://doi.org/10.1002/zaac.19875500718.Search in Google Scholar

27. Klapötke, T. M., Krumm, B., Mayer, P., Polborn, K., Ruscitti, O. P. Inorg. Chem. 2001, 40, 5169; https://doi.org/10.1021/ic010149r.Search in Google Scholar

28. Herberg, S., Naumann, D. Z. Anorg. Allg. Chem. 1982, 494, 159; https://doi.org/10.1002/zaac.19824940121.Search in Google Scholar

29. Klapötke, T. M., Krumm, B., Polborn, K. Eur. J. Inorg. Chem. 1999, 1359; https://doi.org/10.1002/(sici)1099-0682(199908)1999:8<1359::aidejic1359>3.0.co;2-c.10.1002/(SICI)1099-0682(199908)1999:8<1359::AID-EJIC1359>3.0.CO;2-CSearch in Google Scholar

30a). Klapötke, T. M., Krumm, B., Mayer, P., Naumann, D., Schwab, I. J. Fluorine Chem. 2004, 125, 997; https://doi.org/10.1016/j.jfluchem.2004.01.017. Search in Google Scholar

b) Klapötke, T. M., Krumm, B., Mayer, P., Piotrowski, H., Ruscitti, O. P. Z. Anorg. Allg. Chem. 2002, 628, 229.10.1002/1521-3749(200201)628:1<229::AID-ZAAC229>3.0.CO;2-4Search in Google Scholar

31. Kasemann, R., Naumann, D. J. Fluorine Chem. 1988, 41, 321; https://doi.org/10.1016/s0022-1139(00)81033-7.Search in Google Scholar

32. Kniep, R., Körte, L., Mootz, D. Z. Naturforsch. 1981, 36b, 1660; https://doi.org/10.1515/znb-1981-1231.Search in Google Scholar

33a). Glodde, T., Vishnevskiy, Y. V., Zimmermann, L., Stammler, H.-G., Neumann, B., Mitzel, N. W. Angew. Chem. Int. Ed. 2020, 60, 1519; https://doi.org/10.1002/anie.202013480. Search in Google Scholar

b) Vishnevskiy, Y. V., Mitzel, N. W. Angew. Chem. Int. Ed. 2021, 60, 13150; https://doi.org/10.1002/anie.202104899.Search in Google Scholar

34a). Blomeyer, S., Linnemannstöns, M., Nissen, J. H., Paulus, J., Neumann, B., Stammler, H.-G., Mitzel, N. W. Angew. Chem. Int. Ed. Engl. 2017, 56, 13259; https://doi.org/10.1002/anie.201707716.Search in Google Scholar

35. Klapötke, T. M., Krumm, B., Polborn, K. Z. Anorg. Allg. Chem. 2000, 626, 2047; https://doi.org/10.1002/1521-3749(200010)626:10<2047::aid-zaac2047>3.0.co;2-h.10.1002/1521-3749(200010)626:10<2047::AID-ZAAC2047>3.0.CO;2-HSearch in Google Scholar

36a). Zhao, Y., Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215; https://doi.org/10.1007/s00214-007-0310-x. Search in Google Scholar

b) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057; https://doi.org/10.1039/b515623h. Search in Google Scholar PubMed

c) Weigend, F., Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297; https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

37. Bulat, F. A., Toro-Labbé, A., Brinck, T., Murray, J. S., Politzer, P. J. Mol. Model. 2010, 16, 1679; https://doi.org/10.1007/s00894-010-0692-x.Search in Google Scholar PubMed

38. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

39. Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71, 3; https://doi.org/10.1107/s2053273315099842.Search in Google Scholar

40. Sheldrick, G. M. Acta crystallogr. Sect. C 2015, 71, 3; https://doi.org/10.1107/s2053273315099842.Search in Google Scholar

41. Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

42. Reuter, C. G., Vishnevskiy, Y. V., Blomeyer, S., Mitzel, N. W. Z. Naturforsch. 2016, 71b, 1; https://doi.org/10.1515/znb-2015-0186.Search in Google Scholar

43a). Vishnevskiy, Y. V. J. Mol. Struct. 2007, 833, 30; https://doi.org/10.1016/j.molstruc.2006.08.026.Search in Google Scholar

b) Vishnevskiy, Y. V. J. Mol. Struct. 2007, 871, 24; https://doi.org/10.1016/j.molstruc.2007.01.053.Search in Google Scholar

44. Vishnevskiy, Y. V. Unex 1.6, 2016. http://unexprog.org.Search in Google Scholar

45. Vishnevskiy, Y. V., Zhabanov, Y. A. J. Phys.: Conf. Ser. 2015, 633, 12076; https://doi.org/10.1088/1742-6596/633/1/012076.Search in Google Scholar

46. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian09, Revision D.01; Gaussian Inc.: Wallingford CT, 2013.Search in Google Scholar

47. Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215; https://doi.org/10.1007/s00214-007-0310-x.Search in Google Scholar

48. Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297; https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

49. Bulat, F. A., Toro-Labbé, A., Brinck, T., Murray, J. S., Politzer, P. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010, 16, 1679; https://doi.org/10.1007/s00894-010-0692-x.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0307).


Received: 2022-12-23
Accepted: 2022-12-31
Published Online: 2023-03-15
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0307/html
Scroll to top button