Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
Abstract
Mixing an aqueous solution of K8[Nb6O19]⋅16H2O with a DMSO/H2O solution of Cu(ClO4)2 · 6 H2O and cyclen at room temperature afforded crystallization of blue crystals of [(Cu(cyclen))6Nb6O19]⋅[ClO4]4·≈4H2O after slow evaporation of the solvents. The crystal structure contains the Lindqvist anion [Nb6O19]8– which is covalently expanded by six symmetry-related [Cu(cyclen)]2+ complexes via Nb-μ2-O-Cu bridges yielding the positively charged [(Cu(cyclen))6Nb6O19]4+ cluster shell. The ClO4− anions and crystal water molecules reside in the empty spaces of the packed clusters. The compound shows two electronic d-d transitions at energetic positions explaining the blue color.
Acknowledgements
Financial support by the State of Schleswig-Holstein is gratefully acknowledged.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no competing financial interests.
References
1. Hayashi, Y. Coord. Chem. Rev. 2011, 255, 2270–2280; https://doi.org/10.1016/j.ccr.2011.02.013.Search in Google Scholar
2. Vilà-Nadal, L., Cronin, L. Nat. Rev. Mater. 2017, 2, 1154.10.1038/natrevmats.2017.54Search in Google Scholar
3. Gumerova, N. I., Rompel, A. Nat. Rev. Chem. 2018, 2, 4893.10.1038/s41570-018-0112Search in Google Scholar
4. Pope, M. T., Müller, A. Angew. Chem. Int. Ed. Engl. 1991, 30, 34–48; https://doi.org/10.1002/anie.199100341.Search in Google Scholar
5. Monakhov, K. Y., Bensch, W., Kögerler, P. Chem. Soc. Rev. 2015, 44, 8443–8483; https://doi.org/10.1039/c5cs00531k.Search in Google Scholar PubMed
6. Nyman, M. Dalton Trans. 2011, 40, 8049–8058; https://doi.org/10.1039/c1dt10435g.Search in Google Scholar PubMed
7. Dopta, J., Mahnke, L. K., Bensch, W. CrystEngComm 2020, 22, 3254–3268; https://doi.org/10.1039/d0ce00315h.Search in Google Scholar
8. Long, D. L., Burkholder, E., Cronin, L. Chem. Soc. Rev. 2007, 36, 105–121; https://doi.org/10.1039/b502666k.Search in Google Scholar PubMed
9. Mahnke, L. K., Kondinski, A., Warzok, U., Näther, C., van Leusen, J., Schalley, C. A., Monakhov, K. Y., Kögerler, P., Bensch, W. Angew. Chem. Int. Ed. 2018, 57, 2972–2975; https://doi.org/10.1002/anie.201712417.Search in Google Scholar PubMed
10. Ammam, M. J. Mater. Chem. 2013, 1, 6291–6312; https://doi.org/10.1039/c3ta01663c.Search in Google Scholar
11. Yamase, T., Prokop, P. V. Angew. Chem. Int. Ed. 2002, 41, 466–469. https://doi.org/10.1002/1521-3773(20020201)41:3<466::aid-anie466>3.0.co;2-w.10.1002/1521-3773(20020201)41:3<466::AID-ANIE466>3.0.CO;2-WSearch in Google Scholar
12. Kortz, U., Müller, A., van Slageren, J., Schnack, J., Dalal, N. S., Dressel, M. Coord. Chem. Rev. 2009, 253, 2315–2327; https://doi.org/10.1016/j.ccr.2009.01.014.Search in Google Scholar
13. Lindqvist, I. Ark. Kemi 1953, 5, 247–250.10.1080/0013191530050307Search in Google Scholar
14. Dopta, J., Krause, D. C., Näther, C., Bensch, W. Cryst. Growth Des. 2018, 18, 4130–4139; https://doi.org/10.1021/acs.cgd.8b00548.Search in Google Scholar
15. Matsumoto, M., Ozawa, Y., Yagasaki, A. Polyhedron 2010, 29, 2196–2201; https://doi.org/10.1016/j.poly.2010.04.016.Search in Google Scholar
16. Niu, J., Wang, G., Zhao, J., Sui, Y., Ma, P., Wang, J. Cryst. Growth Des. 2011, 11, 1253–1261; https://doi.org/10.1021/cg1014829.Search in Google Scholar
17. Mahnke, L. K., Warzok, U., Lin, M., Näther, C., Schalley, C. A., Bensch, W. Chem. Eur. J. 2018, 24, 5522–5528; https://doi.org/10.1002/chem.201705732.Search in Google Scholar
18. Long, D. L., Tsunashima, R., Cronin, L. Angew. Chem. Int. Ed. 2010, 49, 1736–1758; https://doi.org/10.1002/anie.200902483.Search in Google Scholar
19. Nyman, M., Alam, T. M., Bonhomme, F., Rodriguez, M. A., Frazer, C. S., Welk, M. E. J. Cluster Sci. 2006, 17, 197–219; https://doi.org/10.1007/s10876-006-0049-x.Search in Google Scholar
20. Bonhomme, F., Larentzos, J. P., Alam, T. M., Maginn, E. J., Nyman, M. Inorg. Chem. 2005, 44, 1774–1785. https://doi.org/10.1021/ic048847+.10.1021/ic048847+Search in Google Scholar
21. Guo, G., Xu, Y., Cao, J., Hu, C. Chem. Commun. 2011, 47, 9411–9413; https://doi.org/10.1039/c1cc12329g.Search in Google Scholar PubMed
22. Son, J. H., Ohlin, C. A., Johnson, R. L., Yu, P., Casey, W. H. Chem. Eur. J. 2013, 19, 5191–5197; https://doi.org/10.1002/chem.201204563.Search in Google Scholar PubMed
23. Tsunashima, R., Long, D. L., Miras, H. N., Gabb, D., Pradeep, C. P., Cronin, L. Angew. Chem. Int. Ed. 2010, 49, 113–116; https://doi.org/10.1002/anie.200903970.Search in Google Scholar PubMed
24. Huang, P., Qin, C., Su, Z. M., Xing, Y., Wang, X. L., Shao, K. Z., Lan, Y. Q., Wang, E. B. J. Am. Chem. Soc. 2012, 134, 14004–14010; https://doi.org/10.1021/ja303723u.Search in Google Scholar PubMed
25. Chen, S., Ma, P., Luo, H., Wang, Y., Niu, J., Wang, J. Chem. Commun. 2017, 53, 3709–3712.10.1039/C7CC00591ASearch in Google Scholar
26. Zhu, Z. K., Lin, Y. Y., Yu, H., Li, X. X., Zheng, S. T. Angew. Chem. Int. Ed. 2019, 58, 16864–16868; https://doi.org/10.1002/anie.201910477.Search in Google Scholar PubMed
27. Jin, L., Zhu, Z. K., Wu, Y. L., Qi, Y. J., Li, X. X., Zheng, S. T. Angew. Chem. Int. Ed. 2017, 56, 16288–16292; https://doi.org/10.1002/anie.201709565.Search in Google Scholar PubMed
28. Wu, Y. L., Li, X. X., Qi, Y. J., Yu, H., Jin, L., Zheng, S. T. Angew. Chem. Int. Ed. 2018, 57, 8572–8576; https://doi.org/10.1002/anie.201804088.Search in Google Scholar PubMed
29. Liu, Z. Y., Lin, Y. D., Yu, H., Chen, H. N., Guo, Z. W., Li, X. X., Zheng, S. T. Tungsten 2022, 4, 81–98; https://doi.org/10.1007/s42864-021-00134-1.Search in Google Scholar
30. Zhao, H. Y., Li, Y. Z., Zhao, J. W., Wang, L., Yang, G. Y. Coord. Chem. Rev. 2021, 443, 213996.10.1016/j.ccr.2021.213966Search in Google Scholar
31. Zhang, Y., Shen, J. Q., Zheng, L. H., Zhang, Z. M., Li, Y. X., Wang, E. B. Cryst. Growth Des. 2014, 14, 110–116; https://doi.org/10.1021/cg401227g.Search in Google Scholar
32. Nyman, M., Powers, C. R., Bonhomme, F., Alam, T. M., Maginn, E. J., Hobbs, D. T. Chem. Mater. 2008, 20, 2513–2521; https://doi.org/10.1021/cm800158u.Search in Google Scholar
33. Li, X., Dong, J., Liu, H., Sun, X., Chi, Y., Hu, C. J. Hazard Mater. 2018, 344, 994–999; https://doi.org/10.1016/j.jhazmat.2017.11.061.Search in Google Scholar PubMed
34. Niu, J., Li, F., Zhao, J., Ma, P., Zhang, D., Bassil, B., Kortz, U., Wang, J. Chem. Eur. J. 2014, 20, 9852–9857; https://doi.org/10.1002/chem.201402730.Search in Google Scholar PubMed
35. Bontchev, R. P., Venturini, E. L., Nyman, M. Inorg. Chem. 2007, 46, 4483–4491; https://doi.org/10.1021/ic0624118.Search in Google Scholar PubMed
36. Ma, P., Wang, G., Chen, G., Wang, J., Niu, J. J. Mol. Struct. 2011, 997, 126–130; https://doi.org/10.1016/j.molstruc.2011.05.010.Search in Google Scholar
37. Wang, J. P., Niu, H. Y., NiuInorg, J. Y. Chem. Commun. 2008, 11, 63–65; https://doi.org/10.1016/j.inoche.2007.10.015.Search in Google Scholar
38. Chen, G., Wang, C., Ma, P., Wang, J., Niu, J. J. Cluster Sci. 2010, 21, 121–131; https://doi.org/10.1007/s10876-010-0296-8.Search in Google Scholar
39. Wang, G., Ma, P., Li, F., Wang, J. J. Coord. Chem. 2011, 64, 2718–2726; https://doi.org/10.1080/00958972.2011.605881.Search in Google Scholar
40. Wang, J., Yu, C., Ma, P., Niu, J. J. Coord. Chem. 2009, 62, 2299–2306; https://doi.org/10.1080/00958970902807243.Search in Google Scholar
41. Guo, G. L., Xu, Y. Q., Hu, C. W. J. Coord. Chem. 2010, 63, 3137–3145; https://doi.org/10.1080/00958972.2010.510185.Search in Google Scholar
42. Niu, J., Fu, X., Zhao, J., Li, S., Ma, P., Wang, J. Cryst. Growth Des. 2010, 10, 3110–3119; https://doi.org/10.1021/cg100236c.Search in Google Scholar
43. Niu, J. Y., Chen, G., Zhao, J. W., Ma, P. T., Li, S. Z., Wang, J. P., Li, M. X., Bai, Y., Ji, B. S. Chem. Eur. J. 2010, 16, 7082–7086; https://doi.org/10.1002/chem.201000824.Search in Google Scholar PubMed
44. Yang, Z., Shang, J., He, Y., Qiao, Y., Ma, P., Niu, J. Inorg. Chem. 2020, 59, 1967–1972; https://doi.org/10.1021/acs.inorgchem.9b03313.Search in Google Scholar PubMed
45. Müscher-Polzin, P., Näther, C., Bensch, W. Cryst. Growth Des. 2021, 21, 156–165; https://doi.org/10.1021/acs.cgd.0c00973.Search in Google Scholar
46. Müscher-Polzin, P., Näther, C., Bensch, W. Z. Naturforsch. 2020, 75b, 233–237.10.1515/znb-2019-0171Search in Google Scholar
47. Müscher-Polzin, P., Näther, C., Bensch, W. Z. Anorg. Allg. Chem. 2020, 646, 193–198; https://doi.org/10.1002/zaac.201900276.Search in Google Scholar
48. Müscher-Polzin, P., Näther, C., Bensch, W. Z. Naturforsch. 2020, 75b, 583–588.10.1515/znb-2020-0043Search in Google Scholar
49. Brown, I. D., Altermatt, D. Acta Crystallogr. B 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Search in Google Scholar
50. Reibenspies, J. H. Acta Crystallogr. 1992, C48, 1717–1718.10.1107/S0108270192006723Search in Google Scholar
51. Sarma, M., Chatterjee, T., Das, S. K. Inorg. Chem. Commun. 2010, 13, 1114–1117; https://doi.org/10.1016/j.inoche.2010.06.013.Search in Google Scholar
52. Rohde, D., Merzweiler, K. Acta Crystallogr. 2010, E66, m894.Search in Google Scholar
53. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar
54. Falk, M. Spectrochim. Acta 1984, 40, 43–48; https://doi.org/10.1016/0584-8539(84)80027-6.Search in Google Scholar
55. Seki, T., Chiang, K. Y., Yu, C. C., Yu, X., Okuno, M., Hunger, J., Nagata, Y., Bonn, M. J. Phys. Chem. Lett. 2020, 11, 8459–8469; https://doi.org/10.1021/acs.jpclett.0c01259.Search in Google Scholar PubMed PubMed Central
56. Lewis, D. L., Estes, E. D., Hodgson, D. J. J. Cryst. Mol. Struct. 1975, 5, 67–74; https://doi.org/10.1007/bf01202553.Search in Google Scholar
57. Tomlinson, A. A. G., Hathaway, B. J. J. Chem. Soc. A 1968, 1905–1909.10.1039/j19680001905Search in Google Scholar
58. Sheldrick, G. M. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar
59. Sheldrick, G. M. Acta Crystallogr. C 2015, 71, 3–8.10.1107/S2053273314026370Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2023-0302).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies