Home Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
Article
Licensed
Unlicensed Requires Authentication

Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties

  • Philipp Müscher-Polzin , Patrik Hauberg , Christian Näther and Wolfgang Bensch EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

Mixing an aqueous solution of K8[Nb6O19]⋅16H2O with a DMSO/H2O solution of Cu(ClO4)2 · 6 H2O and cyclen at room temperature afforded crystallization of blue crystals of [(Cu(cyclen))6Nb6O19]⋅[ClO4]4·≈4H2O after slow evaporation of the solvents. The crystal structure contains the Lindqvist anion [Nb6O19]8– which is covalently expanded by six symmetry-related [Cu(cyclen)]2+ complexes via Nb-μ2-O-Cu bridges yielding the positively charged [(Cu(cyclen))6Nb6O19]4+ cluster shell. The ClO4 anions and crystal water molecules reside in the empty spaces of the packed clusters. The compound shows two electronic d-d transitions at energetic positions explaining the blue color.


Corresponding author: Wolfgang Bensch, Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany, E-mail:
Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.

Acknowledgements

Financial support by the State of Schleswig-Holstein is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no competing financial interests.

References

1. Hayashi, Y. Coord. Chem. Rev. 2011, 255, 2270–2280; https://doi.org/10.1016/j.ccr.2011.02.013.Search in Google Scholar

2. Vilà-Nadal, L., Cronin, L. Nat. Rev. Mater. 2017, 2, 1154.10.1038/natrevmats.2017.54Search in Google Scholar

3. Gumerova, N. I., Rompel, A. Nat. Rev. Chem. 2018, 2, 4893.10.1038/s41570-018-0112Search in Google Scholar

4. Pope, M. T., Müller, A. Angew. Chem. Int. Ed. Engl. 1991, 30, 34–48; https://doi.org/10.1002/anie.199100341.Search in Google Scholar

5. Monakhov, K. Y., Bensch, W., Kögerler, P. Chem. Soc. Rev. 2015, 44, 8443–8483; https://doi.org/10.1039/c5cs00531k.Search in Google Scholar PubMed

6. Nyman, M. Dalton Trans. 2011, 40, 8049–8058; https://doi.org/10.1039/c1dt10435g.Search in Google Scholar PubMed

7. Dopta, J., Mahnke, L. K., Bensch, W. CrystEngComm 2020, 22, 3254–3268; https://doi.org/10.1039/d0ce00315h.Search in Google Scholar

8. Long, D. L., Burkholder, E., Cronin, L. Chem. Soc. Rev. 2007, 36, 105–121; https://doi.org/10.1039/b502666k.Search in Google Scholar PubMed

9. Mahnke, L. K., Kondinski, A., Warzok, U., Näther, C., van Leusen, J., Schalley, C. A., Monakhov, K. Y., Kögerler, P., Bensch, W. Angew. Chem. Int. Ed. 2018, 57, 2972–2975; https://doi.org/10.1002/anie.201712417.Search in Google Scholar PubMed

10. Ammam, M. J. Mater. Chem. 2013, 1, 6291–6312; https://doi.org/10.1039/c3ta01663c.Search in Google Scholar

11. Yamase, T., Prokop, P. V. Angew. Chem. Int. Ed. 2002, 41, 466–469. https://doi.org/10.1002/1521-3773(20020201)41:3<466::aid-anie466>3.0.co;2-w.10.1002/1521-3773(20020201)41:3<466::AID-ANIE466>3.0.CO;2-WSearch in Google Scholar

12. Kortz, U., Müller, A., van Slageren, J., Schnack, J., Dalal, N. S., Dressel, M. Coord. Chem. Rev. 2009, 253, 2315–2327; https://doi.org/10.1016/j.ccr.2009.01.014.Search in Google Scholar

13. Lindqvist, I. Ark. Kemi 1953, 5, 247–250.10.1080/0013191530050307Search in Google Scholar

14. Dopta, J., Krause, D. C., Näther, C., Bensch, W. Cryst. Growth Des. 2018, 18, 4130–4139; https://doi.org/10.1021/acs.cgd.8b00548.Search in Google Scholar

15. Matsumoto, M., Ozawa, Y., Yagasaki, A. Polyhedron 2010, 29, 2196–2201; https://doi.org/10.1016/j.poly.2010.04.016.Search in Google Scholar

16. Niu, J., Wang, G., Zhao, J., Sui, Y., Ma, P., Wang, J. Cryst. Growth Des. 2011, 11, 1253–1261; https://doi.org/10.1021/cg1014829.Search in Google Scholar

17. Mahnke, L. K., Warzok, U., Lin, M., Näther, C., Schalley, C. A., Bensch, W. Chem. Eur. J. 2018, 24, 5522–5528; https://doi.org/10.1002/chem.201705732.Search in Google Scholar

18. Long, D. L., Tsunashima, R., Cronin, L. Angew. Chem. Int. Ed. 2010, 49, 1736–1758; https://doi.org/10.1002/anie.200902483.Search in Google Scholar

19. Nyman, M., Alam, T. M., Bonhomme, F., Rodriguez, M. A., Frazer, C. S., Welk, M. E. J. Cluster Sci. 2006, 17, 197–219; https://doi.org/10.1007/s10876-006-0049-x.Search in Google Scholar

20. Bonhomme, F., Larentzos, J. P., Alam, T. M., Maginn, E. J., Nyman, M. Inorg. Chem. 2005, 44, 1774–1785. https://doi.org/10.1021/ic048847+.10.1021/ic048847+Search in Google Scholar

21. Guo, G., Xu, Y., Cao, J., Hu, C. Chem. Commun. 2011, 47, 9411–9413; https://doi.org/10.1039/c1cc12329g.Search in Google Scholar PubMed

22. Son, J. H., Ohlin, C. A., Johnson, R. L., Yu, P., Casey, W. H. Chem. Eur. J. 2013, 19, 5191–5197; https://doi.org/10.1002/chem.201204563.Search in Google Scholar PubMed

23. Tsunashima, R., Long, D. L., Miras, H. N., Gabb, D., Pradeep, C. P., Cronin, L. Angew. Chem. Int. Ed. 2010, 49, 113–116; https://doi.org/10.1002/anie.200903970.Search in Google Scholar PubMed

24. Huang, P., Qin, C., Su, Z. M., Xing, Y., Wang, X. L., Shao, K. Z., Lan, Y. Q., Wang, E. B. J. Am. Chem. Soc. 2012, 134, 14004–14010; https://doi.org/10.1021/ja303723u.Search in Google Scholar PubMed

25. Chen, S., Ma, P., Luo, H., Wang, Y., Niu, J., Wang, J. Chem. Commun. 2017, 53, 3709–3712.10.1039/C7CC00591ASearch in Google Scholar

26. Zhu, Z. K., Lin, Y. Y., Yu, H., Li, X. X., Zheng, S. T. Angew. Chem. Int. Ed. 2019, 58, 16864–16868; https://doi.org/10.1002/anie.201910477.Search in Google Scholar PubMed

27. Jin, L., Zhu, Z. K., Wu, Y. L., Qi, Y. J., Li, X. X., Zheng, S. T. Angew. Chem. Int. Ed. 2017, 56, 16288–16292; https://doi.org/10.1002/anie.201709565.Search in Google Scholar PubMed

28. Wu, Y. L., Li, X. X., Qi, Y. J., Yu, H., Jin, L., Zheng, S. T. Angew. Chem. Int. Ed. 2018, 57, 8572–8576; https://doi.org/10.1002/anie.201804088.Search in Google Scholar PubMed

29. Liu, Z. Y., Lin, Y. D., Yu, H., Chen, H. N., Guo, Z. W., Li, X. X., Zheng, S. T. Tungsten 2022, 4, 81–98; https://doi.org/10.1007/s42864-021-00134-1.Search in Google Scholar

30. Zhao, H. Y., Li, Y. Z., Zhao, J. W., Wang, L., Yang, G. Y. Coord. Chem. Rev. 2021, 443, 213996.10.1016/j.ccr.2021.213966Search in Google Scholar

31. Zhang, Y., Shen, J. Q., Zheng, L. H., Zhang, Z. M., Li, Y. X., Wang, E. B. Cryst. Growth Des. 2014, 14, 110–116; https://doi.org/10.1021/cg401227g.Search in Google Scholar

32. Nyman, M., Powers, C. R., Bonhomme, F., Alam, T. M., Maginn, E. J., Hobbs, D. T. Chem. Mater. 2008, 20, 2513–2521; https://doi.org/10.1021/cm800158u.Search in Google Scholar

33. Li, X., Dong, J., Liu, H., Sun, X., Chi, Y., Hu, C. J. Hazard Mater. 2018, 344, 994–999; https://doi.org/10.1016/j.jhazmat.2017.11.061.Search in Google Scholar PubMed

34. Niu, J., Li, F., Zhao, J., Ma, P., Zhang, D., Bassil, B., Kortz, U., Wang, J. Chem. Eur. J. 2014, 20, 9852–9857; https://doi.org/10.1002/chem.201402730.Search in Google Scholar PubMed

35. Bontchev, R. P., Venturini, E. L., Nyman, M. Inorg. Chem. 2007, 46, 4483–4491; https://doi.org/10.1021/ic0624118.Search in Google Scholar PubMed

36. Ma, P., Wang, G., Chen, G., Wang, J., Niu, J. J. Mol. Struct. 2011, 997, 126–130; https://doi.org/10.1016/j.molstruc.2011.05.010.Search in Google Scholar

37. Wang, J. P., Niu, H. Y., NiuInorg, J. Y. Chem. Commun. 2008, 11, 63–65; https://doi.org/10.1016/j.inoche.2007.10.015.Search in Google Scholar

38. Chen, G., Wang, C., Ma, P., Wang, J., Niu, J. J. Cluster Sci. 2010, 21, 121–131; https://doi.org/10.1007/s10876-010-0296-8.Search in Google Scholar

39. Wang, G., Ma, P., Li, F., Wang, J. J. Coord. Chem. 2011, 64, 2718–2726; https://doi.org/10.1080/00958972.2011.605881.Search in Google Scholar

40. Wang, J., Yu, C., Ma, P., Niu, J. J. Coord. Chem. 2009, 62, 2299–2306; https://doi.org/10.1080/00958970902807243.Search in Google Scholar

41. Guo, G. L., Xu, Y. Q., Hu, C. W. J. Coord. Chem. 2010, 63, 3137–3145; https://doi.org/10.1080/00958972.2010.510185.Search in Google Scholar

42. Niu, J., Fu, X., Zhao, J., Li, S., Ma, P., Wang, J. Cryst. Growth Des. 2010, 10, 3110–3119; https://doi.org/10.1021/cg100236c.Search in Google Scholar

43. Niu, J. Y., Chen, G., Zhao, J. W., Ma, P. T., Li, S. Z., Wang, J. P., Li, M. X., Bai, Y., Ji, B. S. Chem. Eur. J. 2010, 16, 7082–7086; https://doi.org/10.1002/chem.201000824.Search in Google Scholar PubMed

44. Yang, Z., Shang, J., He, Y., Qiao, Y., Ma, P., Niu, J. Inorg. Chem. 2020, 59, 1967–1972; https://doi.org/10.1021/acs.inorgchem.9b03313.Search in Google Scholar PubMed

45. Müscher-Polzin, P., Näther, C., Bensch, W. Cryst. Growth Des. 2021, 21, 156–165; https://doi.org/10.1021/acs.cgd.0c00973.Search in Google Scholar

46. Müscher-Polzin, P., Näther, C., Bensch, W. Z. Naturforsch. 2020, 75b, 233–237.10.1515/znb-2019-0171Search in Google Scholar

47. Müscher-Polzin, P., Näther, C., Bensch, W. Z. Anorg. Allg. Chem. 2020, 646, 193–198; https://doi.org/10.1002/zaac.201900276.Search in Google Scholar

48. Müscher-Polzin, P., Näther, C., Bensch, W. Z. Naturforsch. 2020, 75b, 583–588.10.1515/znb-2020-0043Search in Google Scholar

49. Brown, I. D., Altermatt, D. Acta Crystallogr. B 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Search in Google Scholar

50. Reibenspies, J. H. Acta Crystallogr. 1992, C48, 1717–1718.10.1107/S0108270192006723Search in Google Scholar

51. Sarma, M., Chatterjee, T., Das, S. K. Inorg. Chem. Commun. 2010, 13, 1114–1117; https://doi.org/10.1016/j.inoche.2010.06.013.Search in Google Scholar

52. Rohde, D., Merzweiler, K. Acta Crystallogr. 2010, E66, m894.Search in Google Scholar

53. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar

54. Falk, M. Spectrochim. Acta 1984, 40, 43–48; https://doi.org/10.1016/0584-8539(84)80027-6.Search in Google Scholar

55. Seki, T., Chiang, K. Y., Yu, C. C., Yu, X., Okuno, M., Hunger, J., Nagata, Y., Bonn, M. J. Phys. Chem. Lett. 2020, 11, 8459–8469; https://doi.org/10.1021/acs.jpclett.0c01259.Search in Google Scholar PubMed PubMed Central

56. Lewis, D. L., Estes, E. D., Hodgson, D. J. J. Cryst. Mol. Struct. 1975, 5, 67–74; https://doi.org/10.1007/bf01202553.Search in Google Scholar

57. Tomlinson, A. A. G., Hathaway, B. J. J. Chem. Soc. A 1968, 1905–1909.10.1039/j19680001905Search in Google Scholar

58. Sheldrick, G. M. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

59. Sheldrick, G. M. Acta Crystallogr. C 2015, 71, 3–8.10.1107/S2053273314026370Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0302).


Received: 2023-01-13
Accepted: 2023-01-19
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0302/html
Scroll to top button