Home 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
Article
Licensed
Unlicensed Requires Authentication

1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands

  • Obadah S. Abdel-Rahman , Michael Linseis , Alaa Alowais and Rainer F. Winter EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

Four divinylphenylene-bridged diruthenium complexes [{Ru(CO)(P i Pr3)2(L-κ 2 [N,O] )}2(μ-CH=CH-C6H4-CH=CH-1,4)] (2a2d) with N,O-chelating 2-hydroxypyridine and 2-hydroxy- or 8-hydroxyquinoline ligands are presented. They were studied by NMR spectroscopy, electrochemical methods and, in their neutral and oxidized states, by IR, UV/Vis/NIR and, if applicable, by EPR spectroscopy. The experimental studies are complimented by (TD-)DFT calculations. Our results indicate that the pyridine-olate complexes 2a,b exist as three isomers with a ratio of about 78:20:2 that differ with respect to the orientation of the N and O donors relative to the CO and alkenyl ligands in the equatorial coordination plane. Only the isomer with both imine N donors trans to the alkenyl ligand is observed for complexes 2c,d with quinolinato ligands. All complexes undergo two consecutive, chemically and electrochemically reversible one-electron oxidations at low potentials. Our results indicate strong contributions of the divinylphenylene bridge to the redox processes and an even delocalization of the electron hole and the unpaired spin density over the entire π-conjugated divinylphenylene diruthenium backbone with only minor involvement of the peripherally attached κ 2 [N,O] donor ligands.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Rainer F. Winter, Fachbereich Chemie der Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany, E-mail:

Funding source: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Santos, A., López, J., Montoya, J., Noheda, P., Romero, A., Echavarren, A. M. Organometallics 1994, 13, 3605–3615; https://doi.org/10.1021/om00021a037.Search in Google Scholar

2. Jia, G., Wu, W. F., Yeung, R. C. Y., Xia, H. P. J. Organomet. Chem. 1997, 539, 53–59; https://doi.org/10.1016/s0022-328x(97)00080-6.Search in Google Scholar

3. Seetharaman, S. K., Chung, M.-C., Englich, U., Ruhlandt-Senge, K., Sponsler, M. B. Inorg. Chem. 2007, 46, 561–567; https://doi.org/10.1021/ic061389f.Search in Google Scholar PubMed

4. Maurer, J., Sarkar, B., Schwederski, B., Kaim, W., Winter, R. F., Záliš, S. Organometallics 2006, 25, 3701–3712; https://doi.org/10.1021/om0602660.Search in Google Scholar

5. Wu, X. H., Jin, S., Liang, J. H., Li, Z. Y., Yu, G.-A., Liu, S. H. Organometallics 2009, 28, 2450–2459; https://doi.org/10.1021/om900018y.Search in Google Scholar

6. Man, W. Y., Xia, J.-L., Brown, N. J., Farmer, J. D., Yufit, D. S., Howard, J. A. K., Liu, S. H., Low, P. J. Organometallics 2011, 30, 1852–1858; https://doi.org/10.1021/om1010534.Search in Google Scholar

7. Wuttke, E., Hervault, Y.-M., Polit, W., Linseis, M., Erler, P., Rigaut, S., Winter, R. F. Organometallics 2014, 33, 4672–4686; https://doi.org/10.1021/om400642j.Search in Google Scholar

8. Scheerer, S., Rotthowe, N., Abdel-Rahman, O. S., He, X., Rigaut, S., Kvapilová, H., Záliš, S., Winter, R. F. Inorg. Chem. 2015, 54, 3387–3402; https://doi.org/10.1021/ic503075e.Search in Google Scholar PubMed

9. Kong, D.-D., Xue, L.-S., Jang, R., Liu, B., Meng, X.-G., Jin, S., Ou, Y.-P., Hao, X., Liu, S.-H. Chem. Eur J. 2015, 21, 9895–9904; https://doi.org/10.1002/chem.201500509.Search in Google Scholar PubMed

10. Zhang, J., Sun, C.-F., Wu, X.-H., Zhang, M.-X., Yin, J., Yu, G.-A., Liu, S. H. Int. J. Electrochem. Sci. 2016, 11, 7875–7889; https://doi.org/10.20964/2016.09.34.Search in Google Scholar

11. Gómez-Lor, B., Santos, A., Ruiz, M., Echavarren, A. M. Eur. J. Inorg. Chem. 2001, 2305–2310; https://doi.org/10.1002/1099-0682(200109)2001:9<2305::aid-ejic2305>3.0.co;2-t.10.1002/1099-0682(200109)2001:9<2305::AID-EJIC2305>3.0.CO;2-TSearch in Google Scholar

12. Pfaff, U., Hildebrandt, A., Korb, M., Oßwald, S., Linseis, M., Schreiter, K., Spange, S., Winter, R. F., Lang, H. Chem. Eur J. 2016, 22, 783–801; https://doi.org/10.1002/chem.201503687.Search in Google Scholar

13. Liu, W.-X., Yan, F., Qian, S.-L., Ye, J.-Y., Liu, X., Yu, M.-X., Wu, X.-H., Le, M.-L., Zhou, Z.-Y., Liu, S.-H., Low, P. J., Jin, S. Eur. J. Inorg. Chem. 2017, 2017, 5015–5026; https://doi.org/10.1002/ejic.201701036.Search in Google Scholar

14. Hua, S., Xia, H., Wan, K. L., Yeung, R. C. Y., Hu, Q. H., Jia, G. J. Organomet. Chem. 2003, 683, 331–336.10.1016/S0022-328X(03)00704-6Search in Google Scholar

15. Li, F., Cheng, J., Chai, X., Jin, S., Wu, X., Yu, G.-A., Liu, S. H., Chen, G. Z. Organometallics 2011, 30, 1830–1837; https://doi.org/10.1021/om100932u.Search in Google Scholar

16. Ou, Y.-P., Jiang, C., Wu, D., Xia, J., Yin, J., Jin, S., Yu, G.-A., Liu, S. H. Organometallics 2011, 30, 5763–5770; https://doi.org/10.1021/om200622q.Search in Google Scholar

17. Mücke, P., Zabel, M., Edge, R., Collison, D., Clément, S., Záliš, S., Winter, R. F., Winter, R. F. J. Organomet. Chem. 2011, 696, 3186–3197; https://doi.org/10.1016/j.jorganchem.2011.06.028.Search in Google Scholar

18. Linseis, M., Záliš, S., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2012, 134, 16671–16692; https://doi.org/10.1021/ja3059606.Search in Google Scholar

19. Chen, J., Wuttke, E., Polit, W., Exner, T., Winter, R. F. J. Am. Chem. Soc. 2013, 135, 3391–3394; https://doi.org/10.1021/ja400673c.Search in Google Scholar

20. Zhang, J., Ou, Y., Xu, M., Sun, C., Yin, J., Yu, G.-A., Liu, S. H. Eur. J. Inorg. Chem. 2014, 2941–2951; https://doi.org/10.1002/ejic.201402106.Search in Google Scholar

21. Wuttke, E., Fink, D., Anders, P., Maria Hoyt, A.-L., Polit, W., Linseis, M., Winter, R. F. J. Organomet. Chem. 2016, 821, 4–8; https://doi.org/10.1016/j.jorganchem.2016.02.031.Search in Google Scholar

22. Oßwald, S., Breimaier, S., Linseis, M., Winter, R. F. Organometallics 2017, 36, 1993–2003; https://doi.org/10.1021/acs.organomet.7b00194.Search in Google Scholar

23. Rotthowe, N., Zwicker, J., Winter, R. F. Organometallics 2019, 38, 2782–2799; https://doi.org/10.1021/acs.organomet.9b00318.Search in Google Scholar

24. Ou, Y.-P., Zhang, J., Hu, Y., Yin, J., Chi, C., Liu, S. H. Dalton Trans. 2020, 49, 16877–16886; https://doi.org/10.1039/d0dt02883e.Search in Google Scholar PubMed

25. Xia, H. P., Yeung, R. C. Y., Jia, G. Organometallics 1998, 17, 4762–4768; https://doi.org/10.1021/om9804935.Search in Google Scholar

26. Liu, S. H., Chen, Y., Wan, K. L., Wen, T. B., Zhou, Z., Lo, M. F., Williams, I. D., Jia, G. Organometallics 2002, 21, 4984–4992; https://doi.org/10.1021/om020442e.Search in Google Scholar

27. Liu, S. H., Xia, H., Wen, T. B., Zhou, Z., Jia, G. Organometallics 2003, 22, 737–743; https://doi.org/10.1021/om0207663.Search in Google Scholar

28. Maurer, J., Winter, R. F., Sarkar, B., Záliš, S. Solid State Electrochem 2005, 9, 738–749; https://doi.org/10.1007/s10008-005-0689-z.Search in Google Scholar

29. Yuan, P., Wu, X.-H., Yu, G.-A., Du, D., Liu, S. H. J. Organomet. Chem. 2007, 692, 3588–3592; https://doi.org/10.1016/j.jorganchem.2007.04.040.Search in Google Scholar

30. Abdel-Rahman, O. S., Maurer, J., Záliš, S., Winter, R. F. Organometallics 2015, 34, 3611–3628; https://doi.org/10.1021/acs.organomet.5b00401.Search in Google Scholar

31. Krejcik, M., Danek, M., Hartl, F. J. Electroanal. Chem. 1991, 317, 179–187; https://doi.org/10.1016/0022-0728(91)85012-e.Search in Google Scholar

32. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Egidi, F. L. F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, 2016.Search in Google Scholar

33. Mennucci, B., Tomasi, J. J. Chem. Phys. 1997, 106, 5151–5158; https://doi.org/10.1063/1.473558.Search in Google Scholar

34. Cossi, M., Rega, N., Scalmani, G., Barone, V. J. Comput. Chem. 2003, 24, 669–681; https://doi.org/10.1002/jcc.10189.Search in Google Scholar PubMed

35. Dolg, M., Wedig, U., Stoll, H., Preuss, H. J. Chem. Phys. 1987, 86, 866–872; https://doi.org/10.1063/1.452288.Search in Google Scholar

36. Küchle, W., Dolg, M., Stoll, H., Preuss, H. J. Chem. Phys. 1994, 100, 7535–7532.10.1063/1.466847Search in Google Scholar

37. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H. Theor. Chim. Acta 1990, 77, 123–141; https://doi.org/10.1007/bf01114537.Search in Google Scholar

38. Hariharan, P. C., Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222; https://doi.org/10.1007/bf00533485.Search in Google Scholar

39. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

40. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396; https://doi.org/10.1103/physrevlett.78.1396.Search in Google Scholar

41. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158–6170; https://doi.org/10.1063/1.478522.Search in Google Scholar

42. O’Boyle, N. M., Tenderholt, A. L., Langner, K. M. J. Comput. Chem. 2008, 29, 839–845; https://doi.org/10.1002/jcc.20823.Search in Google Scholar PubMed

43. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. J. Cheminf. 2012, 4, 17; https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central

44. Tange, O. GNU Parallel 2018; https://doi.org/10.5281/zenodo.1146014.Search in Google Scholar

45. Tange, O. USENIX Magazine 2011, 36, 42–47.Search in Google Scholar

46. Humphrey, W., Dalke, A., Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed

47. Merrick, J. P., Moran, D., Radom, L. J. Phys. Chem. A 2007, 111, 11683–11700; https://doi.org/10.1021/jp073974n.Search in Google Scholar PubMed

48. Gopinathan, S., Deshpande, S., Gopinathan, C. Trans. Met. Chem. 1993, 18, 406–408.10.1007/BF00208181Search in Google Scholar

49. Islam, A., Ghosh, M. K., Mondal, S., Brandão, P., Chattopadhyay, S. J. Coord. Chem. 2019, 72, 164–179; https://doi.org/10.1080/00958972.2018.1550578.Search in Google Scholar

50. Pevny, F., Winter, R. F., Sarkar, B., Záliš, S. Dalton Trans. 2010, 8000–8011; https://doi.org/10.1039/c0dt00164c.Search in Google Scholar PubMed

51. Camire Ohrenberg, N., Paradee, L. M., DeWitte, R. J., Chong, D., Geiger, W. E. Organometallics 2010, 29, 3179–3186; https://doi.org/10.1021/om100318q.Search in Google Scholar

52. Stoll, M. E., Lovelace, S. R., Geiger, W. E., Schimanke, H., Hyla-Kryspin, I., Gleiter, R. J. Am. Chem. Soc. 1999, 121, 9343–9351; https://doi.org/10.1021/ja9914792.Search in Google Scholar

53. Laws, D. R., Chong, D., Nash, K., Rheingold, A. L., Geiger, W. E. J. Am. Chem. Soc. 2008, 130, 9859–9870; https://doi.org/10.1021/ja801930q.Search in Google Scholar PubMed

54. Sherlock, S. J., Boyd, D. C., Moasser, B., Gladfelter, W. L. Inorg. Chem. 1991, 20, 3626–3632; https://doi.org/10.1021/ic00019a011.Search in Google Scholar

55. Katritzky, A. R., Jones, R. A. J. Chem. Soc. 1960, 2942–2947; https://doi.org/10.1039/jr9600002942.Search in Google Scholar

56. Kanak, C. M. Bull. Chem. Soc. Jpn. 1984, 57, 261–266.Search in Google Scholar

57. Záliš, S., Winter, R. F., Kaim, W. Chem. Rev. 2010, 254, 1383–1396; https://doi.org/10.1016/j.ccr.2010.02.020.Search in Google Scholar

58. Das, R., Linseis, M., Schupp, S. M., Schmidt-Mende, L., Winter, R. F. Chem. Eur J. 2022, e202104403; https://doi.org/10.1002/chem.202104403.Search in Google Scholar PubMed PubMed Central

59. Robin, M. B., Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247–422.10.1016/S0065-2792(08)60179-XSearch in Google Scholar

60. Malecki, G., Nycz, J. E., Ryrych, E., Ponikiewski, L., Nowak, M., Kusz, J., Pikies, J. J. Mol. Struct. 2010, 969, 130–138; https://doi.org/10.1016/j.molstruc.2010.01.054.Search in Google Scholar

61. Favini, G., Raimondi, M., Gandolfo, C. Spectrochim. Acta Mol. Spectros 1968, 24, 207–214; https://doi.org/10.1016/0584-8539(68)80062-5.Search in Google Scholar

62. Ou, Y.-P., Zhang, J., Xu, M., Xia, J., Hartl, F., Yin, J., Yu, G.-A., Liu, S. H. Chem. As. J. 2014, 9, 1152–1160; https://doi.org/10.1002/asia.201301544.Search in Google Scholar PubMed

63. Pevny, F., Di Piazza, E., Norel, L., Drescher, M., Winter, R. F., Rigaut, S. Organometallics 2010, 29, 5912–5918; https://doi.org/10.1021/om1007133.Search in Google Scholar

64. Ou, Y. P., Xia, J., Zhang, J., Xu, M., Yin, J., Yu, G. A., Liu, S. H. Chem. As. J. 2013, 8, 2023–2032; https://doi.org/10.1002/asia.201300419.Search in Google Scholar PubMed

65. Maurer, J., Linseis, M., Sarkar, B., Schwederski, B., Niemeyer, M., Kaim, W., Záliš, S., Anson, C., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2008, 130, 259–268; https://doi.org/10.1021/ja075547t.Search in Google Scholar PubMed

66. Ludwiczak, M., Bayda, M., Dutkiewicz, M., Frąckowiak, D., Majchrzak, M., Marciniak, B., Marciniec, B. Organometallics 2016, 35, 2454–2461; https://doi.org/10.1021/acs.organomet.6b00336.Search in Google Scholar

67. Smith, R. C., Gleason, L. B., Protasiewicz, J. D. J. Mater. Chem. 2006, 16, 2445–2452; https://doi.org/10.1039/b601824f.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0303).


Received: 2022-12-16
Accepted: 2023-01-03
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0303/html
Scroll to top button