Abstract
Four divinylphenylene-bridged diruthenium complexes [{Ru(CO)(P i Pr3)2(L-κ 2 [N,O] – )}2(μ-CH=CH-C6H4-CH=CH-1,4)] (2a–2d) with N,O-chelating 2-hydroxypyridine and 2-hydroxy- or 8-hydroxyquinoline ligands are presented. They were studied by NMR spectroscopy, electrochemical methods and, in their neutral and oxidized states, by IR, UV/Vis/NIR and, if applicable, by EPR spectroscopy. The experimental studies are complimented by (TD-)DFT calculations. Our results indicate that the pyridine-olate complexes 2a,b exist as three isomers with a ratio of about 78:20:2 that differ with respect to the orientation of the N and O donors relative to the CO and alkenyl ligands in the equatorial coordination plane. Only the isomer with both imine N donors trans to the alkenyl ligand is observed for complexes 2c,d with quinolinato ligands. All complexes undergo two consecutive, chemically and electrochemically reversible one-electron oxidations at low potentials. Our results indicate strong contributions of the divinylphenylene bridge to the redox processes and an even delocalization of the electron hole and the unpaired spin density over the entire π-conjugated divinylphenylene diruthenium backbone with only minor involvement of the peripherally attached κ 2 [N,O] – donor ligands.
Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.
Funding source: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: O. S. A.-R. thanks the German Academic Exchange Service (DAAD) for a PhD grant.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Santos, A., López, J., Montoya, J., Noheda, P., Romero, A., Echavarren, A. M. Organometallics 1994, 13, 3605–3615; https://doi.org/10.1021/om00021a037.Search in Google Scholar
2. Jia, G., Wu, W. F., Yeung, R. C. Y., Xia, H. P. J. Organomet. Chem. 1997, 539, 53–59; https://doi.org/10.1016/s0022-328x(97)00080-6.Search in Google Scholar
3. Seetharaman, S. K., Chung, M.-C., Englich, U., Ruhlandt-Senge, K., Sponsler, M. B. Inorg. Chem. 2007, 46, 561–567; https://doi.org/10.1021/ic061389f.Search in Google Scholar PubMed
4. Maurer, J., Sarkar, B., Schwederski, B., Kaim, W., Winter, R. F., Záliš, S. Organometallics 2006, 25, 3701–3712; https://doi.org/10.1021/om0602660.Search in Google Scholar
5. Wu, X. H., Jin, S., Liang, J. H., Li, Z. Y., Yu, G.-A., Liu, S. H. Organometallics 2009, 28, 2450–2459; https://doi.org/10.1021/om900018y.Search in Google Scholar
6. Man, W. Y., Xia, J.-L., Brown, N. J., Farmer, J. D., Yufit, D. S., Howard, J. A. K., Liu, S. H., Low, P. J. Organometallics 2011, 30, 1852–1858; https://doi.org/10.1021/om1010534.Search in Google Scholar
7. Wuttke, E., Hervault, Y.-M., Polit, W., Linseis, M., Erler, P., Rigaut, S., Winter, R. F. Organometallics 2014, 33, 4672–4686; https://doi.org/10.1021/om400642j.Search in Google Scholar
8. Scheerer, S., Rotthowe, N., Abdel-Rahman, O. S., He, X., Rigaut, S., Kvapilová, H., Záliš, S., Winter, R. F. Inorg. Chem. 2015, 54, 3387–3402; https://doi.org/10.1021/ic503075e.Search in Google Scholar PubMed
9. Kong, D.-D., Xue, L.-S., Jang, R., Liu, B., Meng, X.-G., Jin, S., Ou, Y.-P., Hao, X., Liu, S.-H. Chem. Eur J. 2015, 21, 9895–9904; https://doi.org/10.1002/chem.201500509.Search in Google Scholar PubMed
10. Zhang, J., Sun, C.-F., Wu, X.-H., Zhang, M.-X., Yin, J., Yu, G.-A., Liu, S. H. Int. J. Electrochem. Sci. 2016, 11, 7875–7889; https://doi.org/10.20964/2016.09.34.Search in Google Scholar
11. Gómez-Lor, B., Santos, A., Ruiz, M., Echavarren, A. M. Eur. J. Inorg. Chem. 2001, 2305–2310; https://doi.org/10.1002/1099-0682(200109)2001:9<2305::aid-ejic2305>3.0.co;2-t.10.1002/1099-0682(200109)2001:9<2305::AID-EJIC2305>3.0.CO;2-TSearch in Google Scholar
12. Pfaff, U., Hildebrandt, A., Korb, M., Oßwald, S., Linseis, M., Schreiter, K., Spange, S., Winter, R. F., Lang, H. Chem. Eur J. 2016, 22, 783–801; https://doi.org/10.1002/chem.201503687.Search in Google Scholar
13. Liu, W.-X., Yan, F., Qian, S.-L., Ye, J.-Y., Liu, X., Yu, M.-X., Wu, X.-H., Le, M.-L., Zhou, Z.-Y., Liu, S.-H., Low, P. J., Jin, S. Eur. J. Inorg. Chem. 2017, 2017, 5015–5026; https://doi.org/10.1002/ejic.201701036.Search in Google Scholar
14. Hua, S., Xia, H., Wan, K. L., Yeung, R. C. Y., Hu, Q. H., Jia, G. J. Organomet. Chem. 2003, 683, 331–336.10.1016/S0022-328X(03)00704-6Search in Google Scholar
15. Li, F., Cheng, J., Chai, X., Jin, S., Wu, X., Yu, G.-A., Liu, S. H., Chen, G. Z. Organometallics 2011, 30, 1830–1837; https://doi.org/10.1021/om100932u.Search in Google Scholar
16. Ou, Y.-P., Jiang, C., Wu, D., Xia, J., Yin, J., Jin, S., Yu, G.-A., Liu, S. H. Organometallics 2011, 30, 5763–5770; https://doi.org/10.1021/om200622q.Search in Google Scholar
17. Mücke, P., Zabel, M., Edge, R., Collison, D., Clément, S., Záliš, S., Winter, R. F., Winter, R. F. J. Organomet. Chem. 2011, 696, 3186–3197; https://doi.org/10.1016/j.jorganchem.2011.06.028.Search in Google Scholar
18. Linseis, M., Záliš, S., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2012, 134, 16671–16692; https://doi.org/10.1021/ja3059606.Search in Google Scholar
19. Chen, J., Wuttke, E., Polit, W., Exner, T., Winter, R. F. J. Am. Chem. Soc. 2013, 135, 3391–3394; https://doi.org/10.1021/ja400673c.Search in Google Scholar
20. Zhang, J., Ou, Y., Xu, M., Sun, C., Yin, J., Yu, G.-A., Liu, S. H. Eur. J. Inorg. Chem. 2014, 2941–2951; https://doi.org/10.1002/ejic.201402106.Search in Google Scholar
21. Wuttke, E., Fink, D., Anders, P., Maria Hoyt, A.-L., Polit, W., Linseis, M., Winter, R. F. J. Organomet. Chem. 2016, 821, 4–8; https://doi.org/10.1016/j.jorganchem.2016.02.031.Search in Google Scholar
22. Oßwald, S., Breimaier, S., Linseis, M., Winter, R. F. Organometallics 2017, 36, 1993–2003; https://doi.org/10.1021/acs.organomet.7b00194.Search in Google Scholar
23. Rotthowe, N., Zwicker, J., Winter, R. F. Organometallics 2019, 38, 2782–2799; https://doi.org/10.1021/acs.organomet.9b00318.Search in Google Scholar
24. Ou, Y.-P., Zhang, J., Hu, Y., Yin, J., Chi, C., Liu, S. H. Dalton Trans. 2020, 49, 16877–16886; https://doi.org/10.1039/d0dt02883e.Search in Google Scholar PubMed
25. Xia, H. P., Yeung, R. C. Y., Jia, G. Organometallics 1998, 17, 4762–4768; https://doi.org/10.1021/om9804935.Search in Google Scholar
26. Liu, S. H., Chen, Y., Wan, K. L., Wen, T. B., Zhou, Z., Lo, M. F., Williams, I. D., Jia, G. Organometallics 2002, 21, 4984–4992; https://doi.org/10.1021/om020442e.Search in Google Scholar
27. Liu, S. H., Xia, H., Wen, T. B., Zhou, Z., Jia, G. Organometallics 2003, 22, 737–743; https://doi.org/10.1021/om0207663.Search in Google Scholar
28. Maurer, J., Winter, R. F., Sarkar, B., Záliš, S. Solid State Electrochem 2005, 9, 738–749; https://doi.org/10.1007/s10008-005-0689-z.Search in Google Scholar
29. Yuan, P., Wu, X.-H., Yu, G.-A., Du, D., Liu, S. H. J. Organomet. Chem. 2007, 692, 3588–3592; https://doi.org/10.1016/j.jorganchem.2007.04.040.Search in Google Scholar
30. Abdel-Rahman, O. S., Maurer, J., Záliš, S., Winter, R. F. Organometallics 2015, 34, 3611–3628; https://doi.org/10.1021/acs.organomet.5b00401.Search in Google Scholar
31. Krejcik, M., Danek, M., Hartl, F. J. Electroanal. Chem. 1991, 317, 179–187; https://doi.org/10.1016/0022-0728(91)85012-e.Search in Google Scholar
32. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Egidi, F. L. F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, 2016.Search in Google Scholar
33. Mennucci, B., Tomasi, J. J. Chem. Phys. 1997, 106, 5151–5158; https://doi.org/10.1063/1.473558.Search in Google Scholar
34. Cossi, M., Rega, N., Scalmani, G., Barone, V. J. Comput. Chem. 2003, 24, 669–681; https://doi.org/10.1002/jcc.10189.Search in Google Scholar PubMed
35. Dolg, M., Wedig, U., Stoll, H., Preuss, H. J. Chem. Phys. 1987, 86, 866–872; https://doi.org/10.1063/1.452288.Search in Google Scholar
36. Küchle, W., Dolg, M., Stoll, H., Preuss, H. J. Chem. Phys. 1994, 100, 7535–7532.10.1063/1.466847Search in Google Scholar
37. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H. Theor. Chim. Acta 1990, 77, 123–141; https://doi.org/10.1007/bf01114537.Search in Google Scholar
38. Hariharan, P. C., Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222; https://doi.org/10.1007/bf00533485.Search in Google Scholar
39. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
40. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396; https://doi.org/10.1103/physrevlett.78.1396.Search in Google Scholar
41. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158–6170; https://doi.org/10.1063/1.478522.Search in Google Scholar
42. O’Boyle, N. M., Tenderholt, A. L., Langner, K. M. J. Comput. Chem. 2008, 29, 839–845; https://doi.org/10.1002/jcc.20823.Search in Google Scholar PubMed
43. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. J. Cheminf. 2012, 4, 17; https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central
44. Tange, O. GNU Parallel 2018; https://doi.org/10.5281/zenodo.1146014.Search in Google Scholar
45. Tange, O. USENIX Magazine 2011, 36, 42–47.Search in Google Scholar
46. Humphrey, W., Dalke, A., Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed
47. Merrick, J. P., Moran, D., Radom, L. J. Phys. Chem. A 2007, 111, 11683–11700; https://doi.org/10.1021/jp073974n.Search in Google Scholar PubMed
48. Gopinathan, S., Deshpande, S., Gopinathan, C. Trans. Met. Chem. 1993, 18, 406–408.10.1007/BF00208181Search in Google Scholar
49. Islam, A., Ghosh, M. K., Mondal, S., Brandão, P., Chattopadhyay, S. J. Coord. Chem. 2019, 72, 164–179; https://doi.org/10.1080/00958972.2018.1550578.Search in Google Scholar
50. Pevny, F., Winter, R. F., Sarkar, B., Záliš, S. Dalton Trans. 2010, 8000–8011; https://doi.org/10.1039/c0dt00164c.Search in Google Scholar PubMed
51. Camire Ohrenberg, N., Paradee, L. M., DeWitte, R. J., Chong, D., Geiger, W. E. Organometallics 2010, 29, 3179–3186; https://doi.org/10.1021/om100318q.Search in Google Scholar
52. Stoll, M. E., Lovelace, S. R., Geiger, W. E., Schimanke, H., Hyla-Kryspin, I., Gleiter, R. J. Am. Chem. Soc. 1999, 121, 9343–9351; https://doi.org/10.1021/ja9914792.Search in Google Scholar
53. Laws, D. R., Chong, D., Nash, K., Rheingold, A. L., Geiger, W. E. J. Am. Chem. Soc. 2008, 130, 9859–9870; https://doi.org/10.1021/ja801930q.Search in Google Scholar PubMed
54. Sherlock, S. J., Boyd, D. C., Moasser, B., Gladfelter, W. L. Inorg. Chem. 1991, 20, 3626–3632; https://doi.org/10.1021/ic00019a011.Search in Google Scholar
55. Katritzky, A. R., Jones, R. A. J. Chem. Soc. 1960, 2942–2947; https://doi.org/10.1039/jr9600002942.Search in Google Scholar
56. Kanak, C. M. Bull. Chem. Soc. Jpn. 1984, 57, 261–266.Search in Google Scholar
57. Záliš, S., Winter, R. F., Kaim, W. Chem. Rev. 2010, 254, 1383–1396; https://doi.org/10.1016/j.ccr.2010.02.020.Search in Google Scholar
58. Das, R., Linseis, M., Schupp, S. M., Schmidt-Mende, L., Winter, R. F. Chem. Eur J. 2022, e202104403; https://doi.org/10.1002/chem.202104403.Search in Google Scholar PubMed PubMed Central
59. Robin, M. B., Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247–422.10.1016/S0065-2792(08)60179-XSearch in Google Scholar
60. Malecki, G., Nycz, J. E., Ryrych, E., Ponikiewski, L., Nowak, M., Kusz, J., Pikies, J. J. Mol. Struct. 2010, 969, 130–138; https://doi.org/10.1016/j.molstruc.2010.01.054.Search in Google Scholar
61. Favini, G., Raimondi, M., Gandolfo, C. Spectrochim. Acta Mol. Spectros 1968, 24, 207–214; https://doi.org/10.1016/0584-8539(68)80062-5.Search in Google Scholar
62. Ou, Y.-P., Zhang, J., Xu, M., Xia, J., Hartl, F., Yin, J., Yu, G.-A., Liu, S. H. Chem. As. J. 2014, 9, 1152–1160; https://doi.org/10.1002/asia.201301544.Search in Google Scholar PubMed
63. Pevny, F., Di Piazza, E., Norel, L., Drescher, M., Winter, R. F., Rigaut, S. Organometallics 2010, 29, 5912–5918; https://doi.org/10.1021/om1007133.Search in Google Scholar
64. Ou, Y. P., Xia, J., Zhang, J., Xu, M., Yin, J., Yu, G. A., Liu, S. H. Chem. As. J. 2013, 8, 2023–2032; https://doi.org/10.1002/asia.201300419.Search in Google Scholar PubMed
65. Maurer, J., Linseis, M., Sarkar, B., Schwederski, B., Niemeyer, M., Kaim, W., Záliš, S., Anson, C., Zabel, M., Winter, R. F. J. Am. Chem. Soc. 2008, 130, 259–268; https://doi.org/10.1021/ja075547t.Search in Google Scholar PubMed
66. Ludwiczak, M., Bayda, M., Dutkiewicz, M., Frąckowiak, D., Majchrzak, M., Marciniak, B., Marciniec, B. Organometallics 2016, 35, 2454–2461; https://doi.org/10.1021/acs.organomet.6b00336.Search in Google Scholar
67. Smith, R. C., Gleason, L. B., Protasiewicz, J. D. J. Mater. Chem. 2006, 16, 2445–2452; https://doi.org/10.1039/b601824f.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0303).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies