Startseite (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

(NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra

  • Daniela Vitzthum , Klaus Wurst und Hubert Huppertz EMAIL logo
Veröffentlicht/Copyright: 28. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The first ammonium indium borate (NH4)InB8O14 was synthesized from indium oxide and boric acid under high-pressure/high-temperature conditions of 9 GPa and 1000°C with a Walker-type multianvil apparatus in a BN crucible. Although a reproduction of this synthesis product failed until now, we were able to determine the crystal structure via single-crystal X-ray diffraction data collected at room temperature. (NH4)InB8O14 crystallizes in the monoclinic space group P2/m (Z=2) with a=4.4053(2), b=7.8184(3), c=12.4685(4) Å, β=94.60(1)°, and V=428.06(3) Å3. The structure comprises all three basic structural units of borates, namely corner-sharing BO4 tetrahedra, edge-sharing BO4 tetrahedra, and planar BO3 groups. Large cavities in the borate network give space to disordered, isolated ammonium ions. The presence of nitrogen (confirmed by EDX analysis) appears to originate from the container material.


Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


Acknowledgements

We thank Dr. Gunter Heymann for the recording of the single-crystal data.

References

[1] T. Welker, J. Lumin.1991, 48, 49.10.1016/0022-2313(91)90075-7Suche in Google Scholar

[2] D. Vitzthum, K. Wurst, J. Pann, P. Brüggeller, M. Seibald, H. Huppertz, Angew. Chem. Int. Ed.2018, 57, DOI: 10.1002/anie.201804083 (in press).10.1002/anie.201804083Suche in Google Scholar PubMed PubMed Central

[3] D. Vitzthum, K. Wurst, J. Prock, P. Bruggeller, H. Huppertz, Inorg. Chem.2016, 55, 11473.10.1021/acs.inorgchem.6b02029Suche in Google Scholar PubMed

[4] J. R. Cox, D. A. Keszler, Acta Crystallogr.1994, C50, 1857.10.1107/S0108270194003999Suche in Google Scholar

[5] R. Cong, T. Yang, H. Li, F. Liao, Y. Wang, J. Lin, Eur. J. Inorg. Chem.2010, 2010, 1703.10.1002/ejic.200901078Suche in Google Scholar

[6] D. Vitzthum, M. Schauperl, K. R. Liedl, H. Huppertz, Z. Naturforsch.2017, 72b, 69.10.1515/znb-2016-0211Suche in Google Scholar

[7] T. S. Ortner, D. Vitzthum, G. Heymann, H. Huppertz, Z. Anorg. Allg. Chem.2017, 643, 2103.10.1002/zaac.201700353Suche in Google Scholar

[8] D. Vitzthum, L. Bayarjargal, B. Winkler, H. Huppertz, Inorg. Chem.2018, 57, 5554.10.1021/acs.inorgchem.8b00518Suche in Google Scholar PubMed

[9] D. Vitzthum, H. Huppertz, Z. Kristallogr. – NCS2018, 233, 733.Suche in Google Scholar

[10] H. Huppertz, B. von der Eltz, J. Am. Chem. Soc.2002, 124, 9376.10.1021/ja017691zSuche in Google Scholar PubMed

[11] S. Jin, G. Cai, W. Wang, M. He, S. Wang, X. Chen, Angew. Chem. Int. Ed.2010, 49, 4967.10.1002/anie.200907075Suche in Google Scholar PubMed

[12] G. Sohr, D. M. Többens, J. Schmedt auf der Günne, H. Huppertz, Chem. Eur. J.2014, 20, 17059.10.1002/chem.201404018Suche in Google Scholar PubMed

[13] G. Sohr, S. C. Neumair, G. Heymann, K. Wurst, J. Schmedt auf der Günne, H. Huppertz, Chem. Eur. J.2014, 20, 4316.10.1002/chem.201303550Suche in Google Scholar PubMed

[14] G. Sohr, D. Wilhelm, D. Vitzthum, M. K. Schmitt, H. Huppertz, Z. Anorg. Allg. Chem.2014, 640, 2753.10.1002/zaac.201400312Suche in Google Scholar

[15] S. C. Neumair, S. Vanicek, R. Kaindl, D. M. Többens, C. Martineau, F. Taulelle, J. Senker, H. Huppertz, Eur. J. Inorg. Chem.2011, 2011, 4147.10.1002/ejic.201100618Suche in Google Scholar

[16] G. Sohr, S. C. Neumair, H. Huppertz, Z. Naturforsch.2012, 67b, 1197.10.5560/znb.2012-0248Suche in Google Scholar

[17] G. Sohr, L. Perfler, H. Huppertz, Z. Naturforsch.2014, 69b, 1260.10.5560/znb.2014-4124Suche in Google Scholar

[18] H. Huppertz, Z. Kristallogr.2004, 219, 330.10.1524/zkri.219.6.330.34633Suche in Google Scholar

[19] D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral.1990, 75, 1020.Suche in Google Scholar

[20] D. Walker, Am. Mineral.1991, 76, 1092.10.1007/978-1-4615-3968-1_10Suche in Google Scholar

[21] G. M. Sheldrick, Sadabs 2014/5, Bruker AXS Inc., Madison, Wisconsin (USA) 2001.Suche in Google Scholar

[22] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed

[23] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Suche in Google Scholar

[24] L. J. Farrugia, J. Appl. Crystallogr.2012, 45, 849.10.1107/S0021889812029111Suche in Google Scholar

[25] F. Liebau, Structural Chemistry of Silicates, Springer-Verlag, Berlin, 1985.10.1007/978-3-642-50076-3Suche in Google Scholar

[26] E. Zobetz, Z. Kristallogr.1990, 191, 45.10.1524/zkri.1990.191.1-2.45Suche in Google Scholar

[27] J. S. Knyrim, F. Roessner, S. Jakob, D. Johrendt, I. Kinski, R. Glaum, H. Huppertz, Angew. Chem. Int. Ed.2007, 46, 9097.10.1002/anie.200703399Suche in Google Scholar PubMed

[28] H. Emme, H. Huppertz, Acta Crystallogr.2005, C61, 29.10.1107/S0108270104030446Suche in Google Scholar

[29] E. Zobetz, Z. Kristallogr.1982, 160, 81.10.1524/zkri.1982.160.1-2.81Suche in Google Scholar

Received: 2018-07-07
Accepted: 2018-07-18
Published Online: 2018-07-28
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0141/html
Button zum nach oben scrollen