Startseite Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)

  • Sebastian Stein , Lukas Heletta und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 4. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The ternary rare earth transition metal-indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir) were obtained from high-temperature reactions in sealed niobium ampoules. These indides adopt a hexagonal structure of the Lu3Co1.87In4 type (space group P6̅), a ternary ordered superstructure of the aristotype Fe2P. The structures of three different compounds were refined from single-crystal X-ray diffractometer data: a=768.20(6), c=381.97(3) pm, 1441 F2 values, 24 parameters, wR2=0.0338 (Ho3Pd1.90In4); a=774.98(3), c=378.51(2) pm, 577 F2 values, 23 parameters, wR2=0.0742 (Ho3Ir1.69In4.31) and a=780.3(1), c=369.4(1) pm, 573 F2 values, 22 parameters, wR2=0.0403 (Tm3Ir1.51In4.49). Refinements of the occupancies revealed homogeneity ranges in case of the iridium-based crystals resulting from Ir/In mixing. The refined composition of the palladium compound was Ho3Pd1.90In4 resulting from defects on the Wyckoff position 1d, which was already reported for the prototype Lu3Co1.87In4. The geometrical motifs of the RE3T2In4 structures are three different types of tricapped trigonal prisms around the transition metal and indium atoms which are condensed via common edges and triangular faces. Temperature dependent magnetic susceptibility measurements of Dy3Ir2In4 and Tm3Ir2In4 showed Curie-Weiss behavior and the experimental magnetic moments of 10.59(2) μB (Dy3Ir2In4) and 7.40(2) μB (Tm3Ir2In4) confirming stable trivalent RE3+ states. Dy3Ir2In4 and Tm3Ir2In4 order antiferromagnetically with Néel temperatures of TN=13.6(5) and 5.4(5) K, respectively.


Dedicated to:

Professor Bernt Krebs on the occasion of his 80th birthday.


Acknowledgements

We thank Dipl.-Ing. Jutta Kösters for the intensity data collections.

References

[1] S. Rundqvist, F. Jellinek, Acta Chem. Scand. 1959, 13, 425.10.3891/acta.chem.scand.13-0425Suche in Google Scholar

[2] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Suche in Google Scholar

[3] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

[4] E. Parthé, L. M. Gelato, Acta Crystallogr. 1984, A40, 169.10.1107/S0108767384000416Suche in Google Scholar

[5] L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139.10.1107/S0021889887086965Suche in Google Scholar

[6] P. I. Krypyakevich, V. Ya. Markiv, E. V. Melnyk, Dopov. Akad. Nauk. Ukr. RSR, Ser. A, 1967, 750.Suche in Google Scholar

[7] A. E. Dwight, M. H. Mueller, R. A. Conner, Jr., J. W. Downey, H. Knott, Trans. Met. Soc. AIME1968, 242, 2075.Suche in Google Scholar

[8] M. F. Zumdick, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 1999, 54b, 45.10.1515/znb-1999-0111Suche in Google Scholar

[9] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics. CRC Press, Boca Raton, Florida, 1994.Suche in Google Scholar

[10] R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Suche in Google Scholar

[11] S. Gupta, K. G. Suresh, J. Alloys Compd. 2015, 618, 562.10.1016/j.jallcom.2014.08.079Suche in Google Scholar

[12] W. Jeitschko, Acta Crystallogr. B1970, 26, 815.10.1107/S0567740870003163Suche in Google Scholar

[13] M. F. Zumdick, R. Pöttgen, Z. Kristallogr. 1999, 214, 90.10.1524/zkri.1999.214.2.90Suche in Google Scholar

[14] V. Ja. Markiv, N. N. Beljavina, A. A. L’isenko, A. A. Babenko, Dopov. Akad. Nauk Ukr. RSR, Ser. B1983, 34.Suche in Google Scholar

[15] V. I. Zaremba, Y. M. Kalychak, P. Y. Zavalii, A. N. Sobolev, Dopov. Akad. Nauk Ukr. RSR, Ser. B1989, 37.Suche in Google Scholar

[16] M. Lukachuk, V. I. Zaremba, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2004, 59b, 182.10.1515/znb-2004-0210Suche in Google Scholar

[17] U. Ch. Rodewald, M. Lukachuk, R.-D. Hoffmann, R. Pöttgen, Monatsh. Chem. 2005, 136, 1985.10.1007/s00706-005-0375-ySuche in Google Scholar

[18] B. Heying, O. Niehaus, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 2016, 71b, 1261.10.1515/znb-2016-0167Suche in Google Scholar

[19] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Suche in Google Scholar

[20] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar

[21] Y. B. Kuz´ma, V. Ya. Markiv, Kristallografiya1964, 9, 279.Suche in Google Scholar

[22] I. R. Harris, G. V. Raynor, J. Less-Common Met.1965, 9, 7.10.1016/0022-5088(65)90029-9Suche in Google Scholar

[23] J. L. Moriarty Jr., J. E. Humphreys, R. O. Gordon, N. C. Baenziger, Acta Crystallogr.1966, 21, 840.10.1107/S0365110X6600402XSuche in Google Scholar

[24] S. P. Yatsenko, A. A. Semyannokov, K. O. Shakarov, E. G. Fedorova, J. Less-Common Met.1983, 90, 95.10.1016/0022-5088(83)90121-2Suche in Google Scholar

[25] K. H. J. Buschow, H. W. de Wijn, A. M. Diepen, J. Chem. Phys.1969, 50, 137.10.1063/1.1670771Suche in Google Scholar

[26] N. Nereson, G. Arnold, J. Chem. Phys.1970, 53, 2818.10.1063/1.1674407Suche in Google Scholar

[27] G. Arnold, N. Nereson, J. Chem. Phys.1969, 51, 1495.10.1063/1.1672201Suche in Google Scholar

[28] V. B. Compton, B. T. Matthias, Acta Crystallogr.1959, 12, 651.10.1107/S0365110X59001918Suche in Google Scholar

[29] R. Ferro, R. Marazza, G. Rambaldi, Z. Metallkd. 1974, 65, 37.10.1515/ijmr-1974-650106Suche in Google Scholar

[30] V. I. Zaremba, U. Ch. Rodewald, R. Pöttgen, Z. Anorg. Allg. Chem. 2005, 631, 1065.10.1002/zaac.200400452Suche in Google Scholar

[31] N. Zaremba, I. Muts, V. Hlukhyy, S. Stein, U. Ch. Rodewald, V. Pavlyuk, R. Pöttgen, V. Zaremba, Z. Naturforsch. 2017, 72b, 631.10.1515/znb-2017-0086Suche in Google Scholar

[32] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar

[33] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

[34] L. Palatinus, Acta Crystallogr.2013, B69, 1.10.1107/S0108767313099868Suche in Google Scholar

[35] L. Palatinus, G. Chapuis, J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Suche in Google Scholar

[36] R. Herbst-Irmer, Z. Kristallogr.2016, 231, 573.10.1515/zkri-2016-1947Suche in Google Scholar

[37] H. D. Flack, G. Bernadinelli, Acta Crystallogr.1999, A55, 908.10.1107/S0108767399004262Suche in Google Scholar

[38] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr.2000, 33, 1143.10.1107/S0021889800007184Suche in Google Scholar

[39] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, B69, 249.10.1107/S2052519213010014Suche in Google Scholar

[40] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Suche in Google Scholar

[41] R.-D. Hoffmann, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 1999, 54b, 38.10.1515/znb-1999-0110Suche in Google Scholar

[42] R.-D. Hoffmann, R. Pöttgen, V. I. Zaremba, Ya. M. Kalychak, Z. Naturforsch. 2000, 55b, 834.10.1515/znb-2000-0907Suche in Google Scholar

[43] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Suche in Google Scholar

[44] H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar

Received: 2018-05-17
Accepted: 2018-06-23
Published Online: 2018-07-04
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0091/html
Button zum nach oben scrollen