Home Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
Article
Licensed
Unlicensed Requires Authentication

Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state

  • Aleksej Jochim and Christian Näther EMAIL logo
Published/Copyright: August 8, 2018
Become an author with De Gruyter Brill

Abstract

Reaction of Mn(NCS)2 with pyrazole leads to the formation of three compounds with the compositions Mn(NCS)2(pyrazole)4 (1), [Mn(NCS)2]2(pyrazole)6 (2) and Mn(NCS)2(pyrazole)2 (3). Compound 1, already reported in the literature, consists of discrete complexes, in which the Mn(II) cations are octahedrally coordinated by four pyrazole ligands and two terminally N-bonded thiocyanate anions. In compound 2 each of the two Mn(II) cations are coordinated octahedrally by three pyrazole ligands and one terminal as well as two bridging thiocyanate anions, which link the metal cations into dimers. In compound 3 also octahedrally coordinated Mn(II) cations are present but they are linked into chains via centrosymmetric pairs of μ-1,3-bridging thiocyanate anions. Upon heating compound 1 loses the pyrazole co-ligands stepwise and is transformed into the chain compound 3via the dimer 2 that is formed as an intermediate. Magnetic measurements on compounds 2 and 3 reveal dominating antiferromagnetic interactions, as already observed for 1D Mn(NCS)2 coordination compounds with pyridine based co-ligands.


Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.


Acknowledgements

We thank Prof. Dr. Wolfgang Bensch for access to his experimental facilities.

References

[1] F. A. Mautner, R. C. Fischer, L. G. Rashmawi, F. R. Louka, S. S. Massoud, Polyhedron2017, 124, 237.10.1016/j.poly.2017.01.001Search in Google Scholar

[2] F. A. Mautner, M. Scherzer, C. Berger, R. C. Fischer, R. Vicente, S. S. Massoud, Polyhedron2015, 85, 20.10.1016/j.poly.2014.08.031Search in Google Scholar

[3] R. Uhrecký, I. Ondrejkovičová, D. Lacková, Z. Fáberová, J. Mroziński, B. Kalińska, Z. Padělková, M. Koman, Inorg. Chim. Acta2014, 414, 33.10.1016/j.ica.2014.01.032Search in Google Scholar

[4] Y. P. Prananto, A. Urbatsch, B. Moubaraki, K. S. Murray, D. R. Turner, G. B. Deacon, R. Batten Stuart, Aust. J. Chem.2017, 70, 516.10.1071/CH16648Search in Google Scholar

[5] J. G. Małecki, T. Groń, H. Duda, Polyhedron2012, 36, 56.10.1016/j.poly.2012.01.026Search in Google Scholar

[6] S. Suckert, L. Germann, R. Dinnebier, J. Werner, C. Näther, Crystals2016, 6, 38.10.3390/cryst6040038Search in Google Scholar

[7] S. S. Massoud, M. Dubin, A. E. Guilbeau, M. Spell, R. Vicente, P. Wilfling, R. C. Fischer, F. A. Mautner, Polyhedron2014, 78, 135.10.1016/j.poly.2014.04.025Search in Google Scholar

[8] G. A. Bowmaker, C. Pakawatchai, S. Saithong, B. W. Skelton, A. H. White, Dalton Trans.2009, 2588.10.1039/b819096hSearch in Google Scholar

[9] E. Lee, J. Seo, S. S. Lee, K.-M. Park, Cryst. Growth Des.2012, 12, 3834.10.1021/cg300692ySearch in Google Scholar

[10] A. V. Godoy Netto, R. C. G. Frem, A. E. Mauro, E. T. de Almeida, A. M. Santana, J. de Souza, R. H. A. Santos, Inorg. Chim. Acta2003, 350, 252.10.1016/S0020-1693(02)01574-8Search in Google Scholar

[11] K. Ha, Acta Crystallogr.2012, E68, m144.10.1107/S1600536811055954Search in Google Scholar

[12] S. Kishi, M. Kato, Inorg. Chem.2003, 42, 8728.10.1021/ic034524mSearch in Google Scholar

[13] K. Ha, Z. Kristallogr. – New Cryst. Struct.2013, 228, 313.10.1524/ncrs.2013.0148Search in Google Scholar

[14] F. A. Mautner, C. Berger, R. C. Fischer, S. S. Massoud, Inorg. Chim. Acta2016, 448, 34.10.1016/j.ica.2016.04.016Search in Google Scholar

[15] M. Maiti, S. Thakurta, D. Sadhukhan, G. Pilet, G. M. Rosair, A. Nonat, L. J. Charbonnière, S. Mitra, Polyhedron2013, 65, 6.10.1016/j.poly.2013.08.009Search in Google Scholar

[16] S. Das, K. Bhar, S. Chattopadhyay, P. Mitra, V. J. Smith, L. J. Barbour, B. K. Ghosh, Polyhedron2012, 38, 26.10.1016/j.poly.2012.02.013Search in Google Scholar

[17] S. Suckert, M. Rams, M. M. Rams, C. Näther, Inorg. Chem.2017, 56, 8007.10.1021/acs.inorgchem.7b00721Search in Google Scholar

[18] S. Suckert, M. Rams, L. Germann, D. M. Cegiełka, R. E. Dinnebier, C. Näther, Cryst. Growth Des.2017, 17, 3997.10.1021/acs.cgd.7b00655Search in Google Scholar

[19] S. Suckert, I. Jess, C. Näther, Z. Anorg. Allg. Chem.2017, 643, 721.10.1002/zaac.201700062Search in Google Scholar

[20] D. A. Buckingham, Coord. Chem. Rev.1994, 135, 587.10.1016/0010-8545(94)80078-2Search in Google Scholar

[21] C. Bartual-Murgui, L. Piñeiro-López, F. J. Valverde-Muñoz, M. C. Muñoz, M. Seredyuk, J. A. Real, Inorg. Chem.2017, 56, 13535.10.1021/acs.inorgchem.7b02272Search in Google Scholar PubMed

[22] J. Werner, M. Rams, Z. Tomkowicz, T. Runčevski, R. E. Dinnebier, S. Suckert, C. Näther, Inorg. Chem.2015, 54, 2893.10.1021/ic503029tSearch in Google Scholar PubMed

[23] J. Werner, T. Runčevski, R. Dinnebier, S. G. Ebbinghaus, S. Suckert, C. Näther, Eur. J. Inorg. Chem.2015, 3236.10.1002/ejic.201500473Search in Google Scholar

[24] T. Neumann, M. Ceglarska, M. Rams, L. S. Germann, R. E. Dinnebier, S. Suckert, I. Jess, C. Näther, Inorg. Chem.2018, 57, 3305.10.1021/acs.inorgchem.8b00092Search in Google Scholar PubMed

[25] C. D. Mekuimemba, F. Conan, A. J. Mota, M. A. Palacios, E. Colacio, S. Triki, Inorg. Chem.2018, 57, 2184.10.1021/acs.inorgchem.7b03082Search in Google Scholar PubMed

[26] A. R. Nassief, M. Abdel-Hafiez, A. Hassen, A. S. G. Khalil, M. R. Saber, J. Magn. Magn. Mater.2018, 452, 488.10.1016/j.jmmm.2017.11.042Search in Google Scholar

[27] A. Das, K. Bhattacharya, S. Giri, A. Ghosh, Polyhedron2017, 134, 295.10.1016/j.poly.2017.06.022Search in Google Scholar

[28] J. L. Guillet, I. Bhowmick, M. P. Shores, C. J. A. Daley, M. Gembicky, J. A. Golen, A. L. Rheingold, L. H. Doerrer, Inorg. Chem.2016, 55, 8099.10.1021/acs.inorgchem.6b01182Search in Google Scholar PubMed

[29] E. Shurdha, C. E. Moore, A. L. Rheingold, S. H. Lapidus, P. W. Stephens, A. M. Arif, J. S. Miller, Inorg. Chem.2013, 52, 10583.10.1021/ic401558fSearch in Google Scholar PubMed

[30] E. Shurdha, S. H. Lapidus, P. W. Stephens, C. E. Moore, A. L. Rheingold, J. S. Miller, Inorg. Chem.2012, 51, 9655.10.1021/ic300804ySearch in Google Scholar PubMed

[31] R. González, A. Acosta, R. Chiozzone, C. Kremer, D. Armentano, G. De Munno, M. Julve, F. Lloret, J. Faus, Inorg. Chem.2012, 51, 5737.10.1021/ic300200kSearch in Google Scholar PubMed

[32] J. Palion-Gazda, B. Machura, F. Lloret, M. Julve, Cryst. Growth Des.2015, 15, 2380.10.1021/acs.cgd.5b00176Search in Google Scholar

[33] C. Wellm, M. Rams, T. Neumann, M. Ceglarska, C. Näther, Cryst. Growth Des.2018, 18, 3117.10.1021/acs.cgd.8b00245Search in Google Scholar

[34] S. Suckert, M. Rams, M. Böhme, L. S. Germann, R. E. Dinnebier, W. Plass, J. Werner, C. Näther, Dalton Trans.2016, 45, 18190.10.1039/C6DT03752FSearch in Google Scholar

[35] O. V. Nesterova, S. R. Petrusenko, V. N. Kokozay, B. W. Skelton, J. Jezierska, W. Linert, A. Ozarowski, Dalton Trans.2008, 1431.10.1039/b713252bSearch in Google Scholar PubMed

[36] S. Banerjee, M. G. B. Drew, C.-Z. Lu, J. Tercero, C. Diaz, A. Ghosh, Eur. J. Inorg. Chem.2005, 2005, 2376.10.1002/ejic.200500080Search in Google Scholar

[37] J. Werner, Z. Tomkowicz, T. Reinert, C. Näther, Eur. J. Inorg. Chem.2015, 3066.10.1002/ejic.201500176Search in Google Scholar

[38] M. Mousavi, V. Bereau, C. Duhayon, P. Guionneau, J.-P. Sutter, Chem. Commun.2012, 48, 10028.10.1039/c2cc33877gSearch in Google Scholar PubMed

[39] A. Switlicka, K. Czerwinska, B. Machura, M. Penkala, A. Bienko, D. Bienko, W. Zierkiewicz, CrystEngComm.2016, 18, 9042.10.1039/C6CE01739HSearch in Google Scholar

[40] S. Petrosyants, Z. Dobrokhotova, A. Ilyukhin, N. Efimov, Y. Mikhlina, V. Novotortsev, Inorg. Chim. Acta2015, 434, 41.10.1016/j.ica.2015.05.014Search in Google Scholar

[41] S. P. Petrosyants, Z. V. Dobrokhotova, A. B. Ilyukhin, N. N. Efimov, A. V. Gavrikov, P. N. Vasilyev, V. M. Novotortsev, Eur. J. Inorg. Chem.2017, 2017, 3561.10.1002/ejic.201700537Search in Google Scholar

[42] S. Wöhlert, T. Fic, Z. Tomkowicz, S. G. Ebbinghaus, M. Rams, W. Haase, C. Näther, Inorg. Chem.2013, 52, 12947.10.1021/ic4012235Search in Google Scholar PubMed

[43] S. Wöhlert, Z. Tomkowicz, M. Rams, S. G. Ebbinghaus, L. Fink, M. U. Schmidt, C. Näther, Inorg. Chem.2014, 53, 8298.10.1021/ic500572pSearch in Google Scholar PubMed

[44] C. Näther, S. Wöhlert, J. Boeckmann, M. Wriedt, I. Jeß, Z. Anorg. Allg. Chem.2013, 639, 2696.10.1002/zaac.201300274Search in Google Scholar

[45] S. Wöhlert, T. Runčevski, R. E. Dinnebier, S. G. Ebbinghaus, C. Näther, Cryst. Growth Des.2014, 14, 1902.10.1021/cg500037dSearch in Google Scholar

[46] S. Wöhlert, U. Ruschewitz, C. Näther, Cryst. Growth Des.2012, 12, 2715.10.1021/cg201659vSearch in Google Scholar

[47] M. Rams, M. Böhme, V. Kataev, Y. Krupskaya, B. Büchner, W. Plass, T. Neumann, Z. Tomkowicz, C. Näther, Phys. Chem. Chem. Phys.2017, 19, 24534.10.1039/C7CP04189FSearch in Google Scholar

[48] M. Rams, Z. Tomkowicz, M. Böhme, W. Plass, S. Suckert, J. Werner, I. Jess, C. Näther, Phys. Chem. Chem. Phys.2017, 19, 3232.10.1039/C6CP08193BSearch in Google Scholar

[49] K. Müller-Buschbaum, Z. Anorg. Allg. Chem.2005, 631, 811.10.1002/zaac.200400543Search in Google Scholar

[50] S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev.2012, 41, 413.10.1039/C1CS15171ASearch in Google Scholar

[51] D. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi, M. Polito, Dalton Trans.2006, 1249.10.1039/b516165gSearch in Google Scholar PubMed

[52] C. J. Adams, P. C. Crawford, A. G. Orpen, T. J. Podesta, B. Salt, Chem. Comm.2005, 2457.10.1039/b501555cSearch in Google Scholar

[53] S. Suckert, S. Wöhlert, C. Näther, Z. Naturforsch.2016, 71b, 381.10.1515/znb-2015-0182Search in Google Scholar

[54] S. Suckert, H. Terraschke, H. Reinsch, C. Näther, Inorg. Chim. Acta2017, 461, 290.10.1016/j.ica.2017.03.002Search in Google Scholar

[55] S. Wöhlert, T. Runčevski, R. E. Dinnebier, C. Näther, Z. Anorg. Allg. Chem.2013, 639, 2648.10.1002/zaac.201300361Search in Google Scholar

[56] P. Lumme, I. Mutikainen, E. Lindell, Inorg. Chim. Acta1983, 71, 217.10.1016/S0020-1693(00)83663-4Search in Google Scholar

[57] P. M. Takahashi, L. P. Melo, R. C. G. Frem, A. V. G. Netto, A. E. Mauro, R. H. A. Santos, J. G. Ferreira, J. Mol. Struct.2006, 783, 161.10.1016/j.molstruc.2005.08.031Search in Google Scholar

[58] H. Yan, Acta Crystallogr.2007, E63, m2602.10.1107/S1600536807046211Search in Google Scholar

[59] P. B. da Silva, R. C. G. Frem, A. V. G. Netto, A. E. Mauro, J. G. Ferreira, R. H. A. Santos, Inorg. Chem. Commun.2006, 9, 235.10.1016/j.inoche.2005.11.015Search in Google Scholar

[60] K. Robinson, G. V. Gibbs, P. H. Ribbe, Science1971, 172, 567.10.1126/science.172.3983.567Search in Google Scholar PubMed

[61] K. Al-Farhan, B. Beagley, O. El-Sayrafi, G. A. Gott, C. A. McAuliffe, P. P. M. Rory, R. G. Pritchard, J. Chem. Soc. Dalton Trans.1990, 1243.10.1039/DT9900001243Search in Google Scholar

[62] Y. Jin, Y.-X. Che, J.-M. Zheng, J. Coord. Chem.2007, 60, 2067.10.1080/00958970701236735Search in Google Scholar

[63] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[64] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar

[65] X-Red (version 1.11), Program for Data Reduction and Absorption Correction, STOE & Cie GmbH, Darmstadt (Germany) 1998.Search in Google Scholar

[66] X-Shape (version 1.03), Program for the Crystal Optimization for Numerical Absorption Correction, STOE & Cie GmbH, Darmstadt (Germany) 1998.Search in Google Scholar

[67] X-Area (version 1.44), Program Package for Single Crystal Measurements, STOE & Cie GmbH, Darmstadt (Germany) 2008.Search in Google Scholar

Received: 2018-05-23
Accepted: 2018-07-21
Published Online: 2018-08-08
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0104/html
Scroll to top button