Startseite Cationic tri(ferrocenecarbonitrile)silver(I)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cationic tri(ferrocenecarbonitrile)silver(I)

  • Frank Strehler , Tobias Rüffer , Julian Noll , Dieter Schaarschmidt , Alexander Hildebrandt und Heinrich Lang EMAIL logo
Veröffentlicht/Copyright: 30. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The synthesis of the tri-coordinated ferrocenecarbonitrile silver(I) complex [Ag(N≡CFc)3]OTf (3) is reported. Its electrochemical behavior shows that the three ferrocenyl units are oxidized in a very close potential range. In addition, the molecular structure of 3 in the solid state is discussed, showing that silver(I) is exclusively coordinated by three ferrocenecarbonitrile molecules.


Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.


Acknowledgement

We thank the Federal Cluster of Excellence EXC 1075 MERGE Technologies for Multifunctional Lightweight Structures, supported by the German Research Foundation (DFG) for the financial support.

References

[1] N. Dowling, P. M. Henry, Inorg. Chem.1982, 21, 4088.10.1021/ic00141a042Suche in Google Scholar

[2] W. Henke, Liebigs Ann. Chem.1858, 106, 280.10.1002/jlac.18581060307Suche in Google Scholar

[3] R. A. Michelin, M. Mozzon, R. Bertani, Coord. Chem. Rev.1996, 147, 299.10.1016/0010-8545(94)01128-1Suche in Google Scholar

[4] B. N. Storhoff, H. C. Lewis Jr., Coord. Chem. Rev.1977, 23, 1.10.1016/S0010-8545(00)80329-XSuche in Google Scholar

[5] M. L. Kuznetsov, Russ. Chem. Rev.2002, 71, 265.10.1070/RC2002v071n04ABEH000708Suche in Google Scholar

[6] N. A. Bokach, V. Y. Kukushkin, Russ. Chem. Rev.2005, 74, 153.10.1070/RC2005v074n02ABEH000979Suche in Google Scholar

[7] S. F. Rach, F. E. Kühn, Chem. Rev.2009, 109, 2061.10.1021/cr800270hSuche in Google Scholar

[8] F. A. Cotton, F. E. Kühn, Inorg. Chim. Acta1996, 252, 257.10.1016/S0020-1693(96)05320-0Suche in Google Scholar

[9] F. A. Cotton, L. M. Daniels, S. C. Haefner, F. E. Ku, Inorg. Chim. Acta1999, 287, 159.10.1016/S0020-1693(98)00415-0Suche in Google Scholar

[10] A. Bacchi, D. Belli Dell’ Amico, F. Calderazzo, L. Labella, G. Pelizzi, F. Marchetti, S. Samaritani, Inorg. Chim. Acta2010, 363, 2467.10.1016/j.ica.2010.04.001Suche in Google Scholar

[11] T. M. Pappenfus, J. R. Burney, K. A. McGee, G. G. W. Lee, L. R. Jarvis, D. P. Ekerholm, M. Farah, L. I. Smith, L. M. Hinkle, K. R. Mann, Inorg. Chim. Acta2010, 363, 3214.10.1016/j.ica.2010.05.060Suche in Google Scholar

[12] M. T. Mock, R. G. Potter, M. J. O’Hagan, D. M. Camaioni, W. G. Dougherty, W. S. Kassel, D. L. DuBois, Inorg. Chim. Acta2011, 50, 11914.10.1021/ic200857xSuche in Google Scholar

[13] K. Born, P. Comba, M. Kerscher, G. Linti, H. Pritzkow, H. Rohwer, Dalton Trans.2009, 362.10.1039/B810833ASuche in Google Scholar

[14] S. Liang, H. Wang, T. Deb, J. L. Petersen, G. T. Yee, M. P. Jensen, Inorg. Chem.2012, 51, 12707.10.1021/ic301409sSuche in Google Scholar

[15] R. T. Henriques, E. Herdtweck, F. E. Kühn, A. D. Lopes, C. C. Romão, J. Chem. Soc., Dalton Trans.1998, 1293.10.1039/a708988kSuche in Google Scholar

[16] L. Becker, F. Strehler, M. Korb, P. Arndt, A. Spannenberg, W. Baumann, H. Lang, U. Rosenthal, Chem. Eur. J.2014, 20, 3061.10.1002/chem.201304478Suche in Google Scholar

[17] R. Buschbeck, P. J. Low, H. Lang, Coord. Chem. Rev.2011, 255, 241.10.1016/j.ccr.2010.07.004Suche in Google Scholar

[18] B. v. Ahsen, B. Bley, S. Proemmel, R. Wartchow, H. Willner, F. Aubke, Z. Anorg. Allg. Chem.1998, 624, 1225.10.1002/(SICI)1521-3749(199807)624:7<1225::AID-ZAAC1225>3.0.CO;2-JSuche in Google Scholar

[19] A. Sen, Acc. Chem. Res.1988, 21, 421.10.1021/ar00155a006Suche in Google Scholar

[20] T. Haselwander, W. Heitz, Macromol. Chem. Phys. 1996, 197, 3435.10.1002/macp.1996.021971029Suche in Google Scholar

[21] T. Kealy, P. Pauson, Nature1951, 168, 1039.10.1038/1681039b0Suche in Google Scholar

[22] K. Aghoramurthy, J. Sci. Ind. Res.1956, 15B, 11.Suche in Google Scholar

[23] P. Graham, R. Lindsey, J. Am. Chem. Soc.1957, 72, 3416.10.1021/ja01570a027Suche in Google Scholar

[24] N. Dowling, P. Henry, N. Lewis, H. Taube, Inorg. Chem.1981, 20, 2345.10.1021/ic50221a084Suche in Google Scholar

[25] K. Handlir, I. Pavlik, Vysoka Skola Chem. Technol.1965, 1, 13.Suche in Google Scholar

[26] J.-L. Fillaut, N. N. Dua, F. Geneste, L. Toupet, S. Sinbandhit, J. Organomet. Chem.2006, 691, 5610.10.1016/j.jorganchem.2006.09.008Suche in Google Scholar

[27] H. Helten, M. Beckmann, G. Schnakenburg, R. Streubel, Eur. J. Inorg. Chem.2010, 2337.10.1002/ejic.201000383Suche in Google Scholar

[28] F. Strehler, A. Hildebrandt, M. Korb, T. Rüffer, H. Lang, Orgmetallics2014, 33, 4279.10.1021/om500597cSuche in Google Scholar

[29] F. Strehler, M. Korb, E. A. Poppitz, H. Lang, J. Orgmet. Chem.2015, 786, 1.10.1016/j.jorganchem.2015.02.049Suche in Google Scholar

[30] F. Strehler, A. Hildebrandt, M. Korb, H. Lang, Z. Anorg. Allg. Chem.2013, 639, 1214.10.1002/zaac.201300133Suche in Google Scholar

[31] N. Chawdhury, N. J. Long, M. F. Mahon, L. Ooi, P. R. Raithby, S. Rooke, A. J. P. White, D. J. Williams, M. Younus, J. Organomet. Chem.2004, 689, 840.10.1016/j.jorganchem.2003.11.035Suche in Google Scholar

[32] H. Lang, R. Packheiser, B. Walfort, Organometallics2006, 25, 1836.10.1021/om058042pSuche in Google Scholar

[33] A. Kivrak, M. Zora, J. Organomet. Chem.2007, 692, 2346.10.1016/j.jorganchem.2007.02.002Suche in Google Scholar

[34] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry, Wiley, Weinheim, New York, 2008.10.1002/9780470405888Suche in Google Scholar

[35] W. E. Buschmann, J. S. Miller, Chem. Eur. J.1998, 4, 1731.10.1002/(SICI)1521-3765(19980904)4:9<1731::AID-CHEM1731>3.0.CO;2-USuche in Google Scholar

[36] G. Gritzner, J. Kuta, Pure Appl. Chem.1984, 56, 461.10.1351/pac198456040461Suche in Google Scholar

[37] S. Manahan, R. Iwamoto, J. Electroanal. Chem.1967, 14, 213.10.1016/0022-0728(67)80073-1Suche in Google Scholar

[38] J. R. Aranzaes, M.-C. Daniel, D. Astruc, Can. J. Chem.2006, 299, 288.10.1139/v05-262Suche in Google Scholar

[39] R. Dronskowski, X.-H. Liu, Acta Crystallogr. C2003, 59, m243.10.1107/S0108270103008357Suche in Google Scholar

[40] L. Chiang, C. Yeh, Z. Chan, K.-M. Wang, Y. Chou, J. Chen, J. Wang, J. Y. Lai, Crystal Growth & Design2008, 8, 470.10.1021/cg070342hSuche in Google Scholar

[41] J. K. Jabor, R. Stößer, N. H. Thong, B. Ziemer, M. Meisel, Angew. Chem.2007, 119, 6470.10.1002/ange.200701211Suche in Google Scholar

[42] A. A. M. Aly, B. Walfort, H. Lang, Z. Kristallogr. NCS2009, 219, 489.Suche in Google Scholar

[43] M. Korb, J. Mahrholdt, H. Lang, Eur. J. Inorg. Chem.2017, 2017, 4028.10.1002/ejic.201700645Suche in Google Scholar

[44] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics2010, 29, 2176.10.1021/om100106eSuche in Google Scholar

[45] G. M. Sheldrick, Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed

[46] A. Nafady, W. E. Geiger, Organometallics2008, 27, 5624.10.1021/om800546dSuche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0090).


Received: 2018-05-16
Accepted: 2018-08-08
Published Online: 2018-08-30
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0090/html
Button zum nach oben scrollen