Abstract
Two new cationic DNA intercalators, 3-phenyl-1-(6-phenylpyridin-2-yl)-1H-[1,2,4]triazolo[4,3-a]pyridin-4-ium (1a)+ and 1-phenyl-3-(6-phenylpyridin-2-yl)-3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium (1b)+, were synthesized from 2-chloropyridine and 2-chloroquinoline, respectively, in a four-step procedure. Generation of the hydrazine, followed by condensation with an aldehyde to give a hydrazone and subsequent Buchwald-Hartwig amination gave a mixture of E- and Z-configured N,N-functionalized hydrazones. Finally, oxidative cyclisation gave rise to the formation of the cationic DNA intercalators, whose molecular structures were determined by single-crystal X-ray diffraction analysis of the hexafluorophosphate and tribromide salt of (1a)+ and (1b)+, respectively. The intercalative binding of (1a)PF6 and (1b)PF6 to ctDNA was confirmed by means of UV, CD and luminescence spectroscopy, determination of the DNA melting temperature and by rheology measurements.
Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.
References
[1] A. A. Almaqwashi, T. Paramanathan, I. Rouzina, M. C. Williams, Nucleic Acids Res.2016, 44, 3971.10.1093/nar/gkw237Search in Google Scholar
[2] L. S. Lerman, J. Mol. Biol.1961, 3, 18.10.1016/S0022-2836(61)80004-1Search in Google Scholar
[3] K. W. Jennette, S. J. Lippard, G. A. Vassiliades, W. R. Bauer, Proc. Natl. Acad. Sci. USA1974, 71, 3839.10.1073/pnas.71.10.3839Search in Google Scholar PubMed PubMed Central
[4] B. M. Zeglis, V. C. Pierre, J. K. Barton, Chem. Commun.2007, 4565.10.1039/b710949kSearch in Google Scholar PubMed PubMed Central
[5] A. S. Biebricher, I. Heller, R. F. H. Roijmans, T. P. Hoekstra, E. J. G. Peterman, G. J. L. Wuite, Nat. Commun.2015, 6, 7304.10.1038/ncomms8304Search in Google Scholar PubMed PubMed Central
[6] M. R. Gill, S. N. Harun, S. Halder, R. A. Boghozian, K. Ramadan, H. Ahmad, K. A. Vallis, Sci. Rep.2016, 6, 31973.10.1038/srep31973Search in Google Scholar PubMed PubMed Central
[7] N. W. Luedtke, J. S. Hwang, E. Nava, D. Gut, M. Kol, Y. Tor, Nucleic Acids Res.2003, 31, 5732.10.1093/nar/gkg758Search in Google Scholar PubMed PubMed Central
[8] L.-M. Tumir, M. Radić Stojković, I. Piantanida, Beilstein J. Org. Chem.2014, 10, 2930.10.3762/bjoc.10.312Search in Google Scholar PubMed PubMed Central
[9] N. W. Luedtke, Q. Liu, Y. Tor, Chem. Eur. J.2005, 11, 495.10.1002/chem.200400559Search in Google Scholar PubMed
[10] A. Schmidt, M. Baune, A. Hepp, J. Kösters, J. Müller, Z. Naturforsch.2016, 71b, 527.10.1515/znb-2016-0021Search in Google Scholar
[11] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans.1987, 2, S1.10.1039/p298700000s1Search in Google Scholar
[12] E. Subramanian, J. Trotter, C. E. Bugg, J. Cryst. Mol. Struct.1971, 1, 3.10.1007/BF01200914Search in Google Scholar
[13] M. Vorlíčková, I. Kejnovská, K. Bednářová, D. Renčiuk, J. Kypr, Chirality2012, 24, 691.10.1002/chir.22064Search in Google Scholar
[14] M. Hebenbrock, G. González-Abradelo, C. A. Strassert, J. Müller, Z. Anorg. Allg. Chem.2018, 644, 671.10.1002/zaac.201800088Search in Google Scholar
[15] N. C. Garbett, P. A. Ragazzon, J. B. Chaires, Nat. Protoc.2007, 2, 3166.10.1038/nprot.2007.475Search in Google Scholar
[16] D. M. Crothers, Biopolymers1968, 6, 575.10.1002/bip.1968.360060411Search in Google Scholar
[17] C. V. Kumar, R. S. Turner, E. H. Asuncion, J. Photochem. Photobiol. A1993, 74, 231.10.1016/1010-6030(93)80121-OSearch in Google Scholar
[18] C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem.1996, 100, 5541.10.1021/jp951507cSearch in Google Scholar
[19] N. M. Gandikota, R. S. Bolla, I. V. K. Viswanath, S. Bethi, Asian J. Chem.2017, 29, 1920.10.14233/ajchem.2017.20624Search in Google Scholar
[20] D. G. Calatayud, E. López-Torres, M. A. Mendiola, Eur. J. Inorg. Chem.2013, 2013, 80.10.1002/ejic.201200815Search in Google Scholar
[21] E. L. Romero, R. F. D’Vries, F. Zuluaga, M. N. Chaur, J. Braz. Chem. Soc.2015, 26, 1265.Search in Google Scholar
[22] S. M. Landge, E. Tkatchouk, D. Benítez, D. A. Lanfranchi, M. Elhabiri, W. A. Goddard III, I. Aprahamian, J. Am. Chem. Soc.2011, 133, 9812.10.1021/ja200699vSearch in Google Scholar PubMed
[23] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]