Home 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
Article
Licensed
Unlicensed Requires Authentication

1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA

  • Marian Hebenbrock and Jens Müller EMAIL logo
Published/Copyright: August 11, 2018
Become an author with De Gruyter Brill

Abstract

Two new cationic DNA intercalators, 3-phenyl-1-(6-phenylpyridin-2-yl)-1H-[1,2,4]triazolo[4,3-a]pyridin-4-ium (1a)+ and 1-phenyl-3-(6-phenylpyridin-2-yl)-3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium (1b)+, were synthesized from 2-chloropyridine and 2-chloroquinoline, respectively, in a four-step procedure. Generation of the hydrazine, followed by condensation with an aldehyde to give a hydrazone and subsequent Buchwald-Hartwig amination gave a mixture of E- and Z-configured N,N-functionalized hydrazones. Finally, oxidative cyclisation gave rise to the formation of the cationic DNA intercalators, whose molecular structures were determined by single-crystal X-ray diffraction analysis of the hexafluorophosphate and tribromide salt of (1a)+ and (1b)+, respectively. The intercalative binding of (1a)PF6 and (1b)PF6 to ctDNA was confirmed by means of UV, CD and luminescence spectroscopy, determination of the DNA melting temperature and by rheology measurements.

Keywords: DNA; intercalator

Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


References

[1] A. A. Almaqwashi, T. Paramanathan, I. Rouzina, M. C. Williams, Nucleic Acids Res.2016, 44, 3971.10.1093/nar/gkw237Search in Google Scholar

[2] L. S. Lerman, J. Mol. Biol.1961, 3, 18.10.1016/S0022-2836(61)80004-1Search in Google Scholar

[3] K. W. Jennette, S. J. Lippard, G. A. Vassiliades, W. R. Bauer, Proc. Natl. Acad. Sci. USA1974, 71, 3839.10.1073/pnas.71.10.3839Search in Google Scholar PubMed PubMed Central

[4] B. M. Zeglis, V. C. Pierre, J. K. Barton, Chem. Commun.2007, 4565.10.1039/b710949kSearch in Google Scholar PubMed PubMed Central

[5] A. S. Biebricher, I. Heller, R. F. H. Roijmans, T. P. Hoekstra, E. J. G. Peterman, G. J. L. Wuite, Nat. Commun.2015, 6, 7304.10.1038/ncomms8304Search in Google Scholar PubMed PubMed Central

[6] M. R. Gill, S. N. Harun, S. Halder, R. A. Boghozian, K. Ramadan, H. Ahmad, K. A. Vallis, Sci. Rep.2016, 6, 31973.10.1038/srep31973Search in Google Scholar PubMed PubMed Central

[7] N. W. Luedtke, J. S. Hwang, E. Nava, D. Gut, M. Kol, Y. Tor, Nucleic Acids Res.2003, 31, 5732.10.1093/nar/gkg758Search in Google Scholar PubMed PubMed Central

[8] L.-M. Tumir, M. Radić Stojković, I. Piantanida, Beilstein J. Org. Chem.2014, 10, 2930.10.3762/bjoc.10.312Search in Google Scholar PubMed PubMed Central

[9] N. W. Luedtke, Q. Liu, Y. Tor, Chem. Eur. J.2005, 11, 495.10.1002/chem.200400559Search in Google Scholar PubMed

[10] A. Schmidt, M. Baune, A. Hepp, J. Kösters, J. Müller, Z. Naturforsch.2016, 71b, 527.10.1515/znb-2016-0021Search in Google Scholar

[11] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans.1987, 2, S1.10.1039/p298700000s1Search in Google Scholar

[12] E. Subramanian, J. Trotter, C. E. Bugg, J. Cryst. Mol. Struct.1971, 1, 3.10.1007/BF01200914Search in Google Scholar

[13] M. Vorlíčková, I. Kejnovská, K. Bednářová, D. Renčiuk, J. Kypr, Chirality2012, 24, 691.10.1002/chir.22064Search in Google Scholar

[14] M. Hebenbrock, G. González-Abradelo, C. A. Strassert, J. Müller, Z. Anorg. Allg. Chem.2018, 644, 671.10.1002/zaac.201800088Search in Google Scholar

[15] N. C. Garbett, P. A. Ragazzon, J. B. Chaires, Nat. Protoc.2007, 2, 3166.10.1038/nprot.2007.475Search in Google Scholar

[16] D. M. Crothers, Biopolymers1968, 6, 575.10.1002/bip.1968.360060411Search in Google Scholar

[17] C. V. Kumar, R. S. Turner, E. H. Asuncion, J. Photochem. Photobiol. A1993, 74, 231.10.1016/1010-6030(93)80121-OSearch in Google Scholar

[18] C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem.1996, 100, 5541.10.1021/jp951507cSearch in Google Scholar

[19] N. M. Gandikota, R. S. Bolla, I. V. K. Viswanath, S. Bethi, Asian J. Chem.2017, 29, 1920.10.14233/ajchem.2017.20624Search in Google Scholar

[20] D. G. Calatayud, E. López-Torres, M. A. Mendiola, Eur. J. Inorg. Chem.2013, 2013, 80.10.1002/ejic.201200815Search in Google Scholar

[21] E. L. Romero, R. F. D’Vries, F. Zuluaga, M. N. Chaur, J. Braz. Chem. Soc.2015, 26, 1265.Search in Google Scholar

[22] S. M. Landge, E. Tkatchouk, D. Benítez, D. A. Lanfranchi, M. Elhabiri, W. A. Goddard III, I. Aprahamian, J. Am. Chem. Soc.2011, 133, 9812.10.1021/ja200699vSearch in Google Scholar PubMed

[23] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

Received: 2018-05-11
Accepted: 2018-05-13
Published Online: 2018-08-11
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0089/html
Scroll to top button