Home Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
Article
Licensed
Unlicensed Requires Authentication

Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl

  • Patrick Leidich , Mihail Mondeshki , Bastian Barton , Ute Kolb , Martin Panthöfer and Wolfgang Tremel EMAIL logo
Published/Copyright: October 11, 2018
Become an author with De Gruyter Brill

Abstract

Rutile-type nanorods of SnO2 were obtained in a one-pot hydrothermal synthesis starting from SnCl4·5H2O and HCl in a temperature range between 200 and 240°C. Although the nanorods are polydisperse, the average length of the nanorods could be adjusted from 13 to 65 nm by varying of the reaction temperature. The resulting anisotropic nanocrystals were characterized using powder X-ray diffraction (PXRD), (high resolution-) transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The particle growth proceeds via a dissolution-recrystallization process with soluble [SnCl5(H2O)] intermediates, as confirmed by PXRD, Raman spectroscopy, and magic angle spinning nuclear magnetic resonance (MAS-NMR).


Dedicated to: Professor Bernt Krebs on the occasion of his 80th and to Professor Gerald Henkel on the occasion of his 70th birthday.


Acknowledgment

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support within the Schwerpunktprogramm SPP1415 “Kristalline Nichtgleich-gewichtsphasen” and Marc-Christian Müller and Aaron Gehl for experimental assistance.

References

[1] L. Fister, D. C. Johnson, J. Am. Chem. Soc.1992, 114, 4639.10.1021/ja00038a029Search in Google Scholar

[2] H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed.2005, 44, 5576.10.1002/anie.200500496Search in Google Scholar PubMed

[3] F. Liu, F. Sommer, C. Bos, E. J. Mittemeijer, Int. Mater. Rev.2007, 52, 193.10.1179/174328007X160308Search in Google Scholar

[4] M. H. Nielsen, S. Aloni, J. J. DeYoreo, Science2014, 345, 1158.10.1126/science.1254051Search in Google Scholar PubMed

[5] J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed.2007, 46, 4630.10.1002/anie.200603148Search in Google Scholar PubMed

[6] T. D. Schladt, K. Schneider, H. Schild, W. Tremel, Dalton Trans.2011, 40, 6315.10.1039/c0dt00689kSearch in Google Scholar PubMed

[7] B. Falabretti, J. Robertson, J. Appl. Phys.2007, 102, 123703.10.1063/1.2822274Search in Google Scholar

[8] F. Yang, S. R. Forrest, Adv. Mater.2006, 18, 2018.10.1002/adma.200600797Search in Google Scholar

[9] L. Vayssieres, M. Grätzel, Angew. Chem. Int. Ed.2004, 43, 3666.10.1002/anie.200454000Search in Google Scholar PubMed

[10] H. J. Snaith, C. Ducati, Nano Letters2010, 10, 1259.10.1021/nl903809rSearch in Google Scholar PubMed

[11] A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M. Choi, Y. S. Kang, K. Char, W. Tremel, Energy Environ. Sci.2012, 5, 5392.10.1039/C1EE02115JSearch in Google Scholar

[12] E. R. Leite, I. T. Weber, E. Longo, I. T. Varela, Adv. Mater.2000, 12, 965.10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7Search in Google Scholar

[13] I. T. Weber, A. Valentini, L. F. D. Probst, E. Longo, E. R. Leite, Mater. Lett.2008, 62, 1677.10.1016/j.matlet.2007.09.058Search in Google Scholar

[14] M. Vergohl, N. Malkomes, T. Matthee, G. Brauer, U. Richter, F. W. Nickol, J. Bruch, Thin Solid Films2001, 392, 258.10.1016/S0040-6090(01)01040-9Search in Google Scholar

[15] W.-H. Baek, M. Choi, T.-S. Yoon, H. H. Lee, Y.-S. Kim, Appl. Phys. Lett.2010, 96, 133506.10.1063/1.3374406Search in Google Scholar

[16] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett.2007, 7, 2463.10.1021/nl0712217Search in Google Scholar

[17] C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chem. Mater.2005, 17, 3297.10.1021/cm048003oSearch in Google Scholar

[18] M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, H.-K. Liu, Angew. Chem.Int. Ed.2007, 46, 750.10.1002/anie.200603309Search in Google Scholar

[19] J. S. Chen, X. W. Lou, Small2013, 9, 1877.10.1002/smll.201202601Search in Google Scholar

[20] M. Ocaiia, E. Matijevic, J. Mater. Res.1990, 5, 1083.10.1557/JMR.1990.1083Search in Google Scholar

[21] B. Cheng, J. M. Russell, W. Shi, L. Zhang, E. T. Samulski, J. Am. Chem. Soc.2004, 126, 5972.10.1021/ja0493244Search in Google Scholar PubMed

[22] R. André, M. N. Tahir, H. C. Schröder, W. E. G. Müller, W. Tremel, Chem. Mater.2011, 23, 5358.10.1021/cm201977cSearch in Google Scholar

[23] G. Xi, J. Ye, Inorg. Chem.2010, 49, 2302.10.1021/ic902131aSearch in Google Scholar PubMed

[24] L. Shi, H. Lin, Langmuir2011, 27, 3977.10.1021/la104529hSearch in Google Scholar PubMed

[25] Y.-L. Wang, M. Guo, M. Zhang, X.-D. Wang, CrystEngComm.2010, 12, 4024.10.1039/c0ce00201aSearch in Google Scholar

[26] H.-C. Chiu, C.-S. Yeh, J. Phys. Chem. C2007, 111, 7256.10.1021/jp0688355Search in Google Scholar

[27] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science2001, 291, 1947.10.1126/science.1058120Search in Google Scholar PubMed

[28] Z. P. Guo, G. D. Gu, Y. Nuli, M. F. Hassan, H. K. Liu, J. Mater. Chem.2009, 19, 3253.10.1039/b821519gSearch in Google Scholar

[29] A. Birkel, N. Loges, E. Mugnaioli, M. Panthöfer, U. Kolb, W. Tremel, Langmuir2010, 26, 3590.10.1021/la902994rSearch in Google Scholar PubMed

[30] A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, CrystEngComm.2011, 13, 2487.10.1039/c0ce00573hSearch in Google Scholar

[31] D.-F. Zhang, L.-D. Sun, J.-L. Yin, C.-H. Yan, Adv. Mater.2003, 15, 1022.10.1002/adma.200304899Search in Google Scholar

[32] Y. J. Chen, X. Y. Xue, Y. G. Wang, T. H. Wang, Appl. Phys. Lett.2005, 87, 233503.10.1063/1.2140091Search in Google Scholar

[33] B. Liu, E. S. Aydil, J. Am. Chem. Soc.2009, 131, 3985.10.1021/ja8078972Search in Google Scholar

[34] Q. Zhang, L. Gao, Langmuir2003, 19, 967.10.1021/la020310qSearch in Google Scholar

[35] X. A. Mao, X. Z. You, A. B. Dai, Inorg. Chim. Acta1989, 156, 177.10.1016/S0020-1693(00)83496-9Search in Google Scholar

[36] X.-A. Mao, X.-Z. You, A.-B. Dai, Mag. Res. Chem.1989, 27, 836.10.1002/mrc.1260270905Search in Google Scholar PubMed

[37] A.-F. Shihada, A. S. Abushamleh, F. Weller, Z. Anorg. Allg. Chem. 2004, 630, 841.10.1002/zaac.200400007Search in Google Scholar

[38] E. R. Caley, J. Am. Chem. Soc.1932, 54, 3240.10.1021/ja01347a028Search in Google Scholar

[39] P. Leidich, O. Linker, M. Panthöfer, W. Tremel, CrystEngComm.2014, 16, 8486.10.1039/C4CE00971ASearch in Google Scholar

[40] H. Schäfer, Angew. Chem. Int. Ed. Engl.1971, 10, 43.10.1002/anie.197100431Search in Google Scholar

[41] D. Bresser, B. Oschmann, M. N. Tahir, W. Tremel, R. Zentel, S. Passerini, J. Power Sources2014, 248, 852.10.1016/j.jpowsour.2013.10.013Search in Google Scholar

[42] R. André, F. Natalio, M. N. Tahir, W. Tremel, Nanoscale2013, 5, 3447.10.1039/c3nr00007aSearch in Google Scholar PubMed

[43] U. Müller, J. Siekmann, G. Frenzen, Acta Crystallogr.1996, C52, 330.10.1107/S0108270195011073Search in Google Scholar

[44] A. Coelho, Topas Academic (version 4.1), Computer Software, Topas Academic, Coelho Software, Brisbane (Australia) 2007.Search in Google Scholar

[45] R. W. Cheary, A. Coelho, J. Appl. Crystallogr.1992, 25, 109.10.1107/S0021889891010804Search in Google Scholar

[46] JCPDS 41-1445. The International Centre for Diffraction Data, Newton Square, PA, USA.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0142).


Received: 2018-07-12
Accepted: 2018-08-31
Published Online: 2018-10-11
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0142/html
Scroll to top button