Startseite Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl

  • Patrick Leidich , Mihail Mondeshki , Bastian Barton , Ute Kolb , Martin Panthöfer und Wolfgang Tremel EMAIL logo
Veröffentlicht/Copyright: 11. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Rutile-type nanorods of SnO2 were obtained in a one-pot hydrothermal synthesis starting from SnCl4·5H2O and HCl in a temperature range between 200 and 240°C. Although the nanorods are polydisperse, the average length of the nanorods could be adjusted from 13 to 65 nm by varying of the reaction temperature. The resulting anisotropic nanocrystals were characterized using powder X-ray diffraction (PXRD), (high resolution-) transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The particle growth proceeds via a dissolution-recrystallization process with soluble [SnCl5(H2O)] intermediates, as confirmed by PXRD, Raman spectroscopy, and magic angle spinning nuclear magnetic resonance (MAS-NMR).


Dedicated to: Professor Bernt Krebs on the occasion of his 80th and to Professor Gerald Henkel on the occasion of his 70th birthday.


Acknowledgment

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support within the Schwerpunktprogramm SPP1415 “Kristalline Nichtgleich-gewichtsphasen” and Marc-Christian Müller and Aaron Gehl for experimental assistance.

References

[1] L. Fister, D. C. Johnson, J. Am. Chem. Soc.1992, 114, 4639.10.1021/ja00038a029Suche in Google Scholar

[2] H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed.2005, 44, 5576.10.1002/anie.200500496Suche in Google Scholar PubMed

[3] F. Liu, F. Sommer, C. Bos, E. J. Mittemeijer, Int. Mater. Rev.2007, 52, 193.10.1179/174328007X160308Suche in Google Scholar

[4] M. H. Nielsen, S. Aloni, J. J. DeYoreo, Science2014, 345, 1158.10.1126/science.1254051Suche in Google Scholar PubMed

[5] J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed.2007, 46, 4630.10.1002/anie.200603148Suche in Google Scholar PubMed

[6] T. D. Schladt, K. Schneider, H. Schild, W. Tremel, Dalton Trans.2011, 40, 6315.10.1039/c0dt00689kSuche in Google Scholar PubMed

[7] B. Falabretti, J. Robertson, J. Appl. Phys.2007, 102, 123703.10.1063/1.2822274Suche in Google Scholar

[8] F. Yang, S. R. Forrest, Adv. Mater.2006, 18, 2018.10.1002/adma.200600797Suche in Google Scholar

[9] L. Vayssieres, M. Grätzel, Angew. Chem. Int. Ed.2004, 43, 3666.10.1002/anie.200454000Suche in Google Scholar PubMed

[10] H. J. Snaith, C. Ducati, Nano Letters2010, 10, 1259.10.1021/nl903809rSuche in Google Scholar PubMed

[11] A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M. Choi, Y. S. Kang, K. Char, W. Tremel, Energy Environ. Sci.2012, 5, 5392.10.1039/C1EE02115JSuche in Google Scholar

[12] E. R. Leite, I. T. Weber, E. Longo, I. T. Varela, Adv. Mater.2000, 12, 965.10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7Suche in Google Scholar

[13] I. T. Weber, A. Valentini, L. F. D. Probst, E. Longo, E. R. Leite, Mater. Lett.2008, 62, 1677.10.1016/j.matlet.2007.09.058Suche in Google Scholar

[14] M. Vergohl, N. Malkomes, T. Matthee, G. Brauer, U. Richter, F. W. Nickol, J. Bruch, Thin Solid Films2001, 392, 258.10.1016/S0040-6090(01)01040-9Suche in Google Scholar

[15] W.-H. Baek, M. Choi, T.-S. Yoon, H. H. Lee, Y.-S. Kim, Appl. Phys. Lett.2010, 96, 133506.10.1063/1.3374406Suche in Google Scholar

[16] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett.2007, 7, 2463.10.1021/nl0712217Suche in Google Scholar

[17] C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chem. Mater.2005, 17, 3297.10.1021/cm048003oSuche in Google Scholar

[18] M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, H.-K. Liu, Angew. Chem.Int. Ed.2007, 46, 750.10.1002/anie.200603309Suche in Google Scholar

[19] J. S. Chen, X. W. Lou, Small2013, 9, 1877.10.1002/smll.201202601Suche in Google Scholar

[20] M. Ocaiia, E. Matijevic, J. Mater. Res.1990, 5, 1083.10.1557/JMR.1990.1083Suche in Google Scholar

[21] B. Cheng, J. M. Russell, W. Shi, L. Zhang, E. T. Samulski, J. Am. Chem. Soc.2004, 126, 5972.10.1021/ja0493244Suche in Google Scholar PubMed

[22] R. André, M. N. Tahir, H. C. Schröder, W. E. G. Müller, W. Tremel, Chem. Mater.2011, 23, 5358.10.1021/cm201977cSuche in Google Scholar

[23] G. Xi, J. Ye, Inorg. Chem.2010, 49, 2302.10.1021/ic902131aSuche in Google Scholar PubMed

[24] L. Shi, H. Lin, Langmuir2011, 27, 3977.10.1021/la104529hSuche in Google Scholar PubMed

[25] Y.-L. Wang, M. Guo, M. Zhang, X.-D. Wang, CrystEngComm.2010, 12, 4024.10.1039/c0ce00201aSuche in Google Scholar

[26] H.-C. Chiu, C.-S. Yeh, J. Phys. Chem. C2007, 111, 7256.10.1021/jp0688355Suche in Google Scholar

[27] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science2001, 291, 1947.10.1126/science.1058120Suche in Google Scholar PubMed

[28] Z. P. Guo, G. D. Gu, Y. Nuli, M. F. Hassan, H. K. Liu, J. Mater. Chem.2009, 19, 3253.10.1039/b821519gSuche in Google Scholar

[29] A. Birkel, N. Loges, E. Mugnaioli, M. Panthöfer, U. Kolb, W. Tremel, Langmuir2010, 26, 3590.10.1021/la902994rSuche in Google Scholar PubMed

[30] A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, CrystEngComm.2011, 13, 2487.10.1039/c0ce00573hSuche in Google Scholar

[31] D.-F. Zhang, L.-D. Sun, J.-L. Yin, C.-H. Yan, Adv. Mater.2003, 15, 1022.10.1002/adma.200304899Suche in Google Scholar

[32] Y. J. Chen, X. Y. Xue, Y. G. Wang, T. H. Wang, Appl. Phys. Lett.2005, 87, 233503.10.1063/1.2140091Suche in Google Scholar

[33] B. Liu, E. S. Aydil, J. Am. Chem. Soc.2009, 131, 3985.10.1021/ja8078972Suche in Google Scholar

[34] Q. Zhang, L. Gao, Langmuir2003, 19, 967.10.1021/la020310qSuche in Google Scholar

[35] X. A. Mao, X. Z. You, A. B. Dai, Inorg. Chim. Acta1989, 156, 177.10.1016/S0020-1693(00)83496-9Suche in Google Scholar

[36] X.-A. Mao, X.-Z. You, A.-B. Dai, Mag. Res. Chem.1989, 27, 836.10.1002/mrc.1260270905Suche in Google Scholar PubMed

[37] A.-F. Shihada, A. S. Abushamleh, F. Weller, Z. Anorg. Allg. Chem. 2004, 630, 841.10.1002/zaac.200400007Suche in Google Scholar

[38] E. R. Caley, J. Am. Chem. Soc.1932, 54, 3240.10.1021/ja01347a028Suche in Google Scholar

[39] P. Leidich, O. Linker, M. Panthöfer, W. Tremel, CrystEngComm.2014, 16, 8486.10.1039/C4CE00971ASuche in Google Scholar

[40] H. Schäfer, Angew. Chem. Int. Ed. Engl.1971, 10, 43.10.1002/anie.197100431Suche in Google Scholar

[41] D. Bresser, B. Oschmann, M. N. Tahir, W. Tremel, R. Zentel, S. Passerini, J. Power Sources2014, 248, 852.10.1016/j.jpowsour.2013.10.013Suche in Google Scholar

[42] R. André, F. Natalio, M. N. Tahir, W. Tremel, Nanoscale2013, 5, 3447.10.1039/c3nr00007aSuche in Google Scholar PubMed

[43] U. Müller, J. Siekmann, G. Frenzen, Acta Crystallogr.1996, C52, 330.10.1107/S0108270195011073Suche in Google Scholar

[44] A. Coelho, Topas Academic (version 4.1), Computer Software, Topas Academic, Coelho Software, Brisbane (Australia) 2007.Suche in Google Scholar

[45] R. W. Cheary, A. Coelho, J. Appl. Crystallogr.1992, 25, 109.10.1107/S0021889891010804Suche in Google Scholar

[46] JCPDS 41-1445. The International Centre for Diffraction Data, Newton Square, PA, USA.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0142).


Received: 2018-07-12
Accepted: 2018-08-31
Published Online: 2018-10-11
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0142/html
Button zum nach oben scrollen